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Generalization of motor learning refers to our ability to apply what has been learned in one context to other contexts.
When generalization is beneficial, it is termed transfer, and when it is detrimental, it is termed interference. Insight
into the mechanism of generalization may be acquired from understanding why training transfers in some contexts but
not others. However, identifying relevant contextual cues has proven surprisingly difficult, perhaps because the search
has mainly been for cues that are explicit. We hypothesized instead that a relevant contextual cue is an implicit
memory of action with a particular body part. To test this hypothesis we considered a task in which participants
learned to control motion of a cursor under visuomotor rotation in two contexts: by moving their hand through motion
of their shoulder and elbow, or through motion of their wrist. Use of these contextual cues led to three observations:
First, in naive participants, learning in the wrist context was much faster than in the arm context. Second,
generalization was asymmetric so that arm training benefited subsequent wrist training, but not vice versa. Third, in
people who had prior wrist training, generalization from the arm to the wrist was blocked. That is, prior wrist training
appeared to prevent both the interference and transfer that subsequent arm training should have caused. To explain
the data, we posited that the learner collected statistics of contextual history: all upper arm movements also move the
hand, but occasionally we move our hands without moving the upper arm. In a Bayesian framework, history of limb
segment use strongly affects parameter uncertainty, which is a measure of the covariance of the contextual cues. This
simple Bayesian prior dictated a generalization pattern that largely reproduced all three findings. For motor learning,
generalization depends on context, which is determined by the statistics of how we have previously used the various
parts of our limbs.

Citation: Krakauer JW, Mazzoni P, Ghazizadeh A, Ravindran R, Shadmehr R (2006) Generalization of motor learning depends on the history of prior action. PLoS Biol 4(10):
e316. DOI: 10.1371/journal.pbio.0040316

Introduction

Everyday experience suggests that we are able to learn
multiple motor skills. In some situations, one skill can aid
learning of another, but in other situations, we wish to recall
one skill specifically without interference from other stored
motor memories. For example, tennis players probably pick
up table tennis faster than people who have never played
racquet sports before. Indeed, it has been argued that the
distinguishing feature of biological learning is generalization
because our survival may depend on our ability to correctly
extrapolate to contexts that are different from our limited
experience [1]. Yet, generalization is a double-edged sword: if
a small contextual change is associated with a large alteration
of the learning problem, then generalization from prior
learning will interfere with the new task, impair performance,
and possibly catastrophically affect what was learned earlier.
For example, when we drive in reverse, we have to do so
slowly to avoid unwanted generalization from driving
forward. In contrast, a stunt driver can learn and access
models for forward and reverse driving independently.

In the past decade, numerous laboratories have been
involved in quantifying patterns of generalization in motor
learning, particularly in tasks that involve reaching. Two
types of generalization have been addressed. First, the
transfer component of generalization has been investigated
by training in one context and then testing in another
context, finding that transfer depends on the degree of
contextual similarity between the training and test episodes

[2–4]. For these tasks, context is often related to the state of
the limb, such as the configuration or velocity of the arm [5].
Intriguingly, some generalization patterns are asymmetric.
For example, learning to reach with prism goggles generalizes
from arm motion to the wrist, but not vice versa [6,7]. Second,
the interference component of generalization has been
investigated by trying to train participants to acquire and
recall opposite motor mappings. However, most experiments
that have trained participants sequentially on two mappings,
A and B, varying either the time between A and B and/or the
number of alternations between A and B, have found flat
gradients of persistent interference: mapping B appears to
catastrophically interfere with mapping A, even with ex-
tended time intervals between them [8–11]. We have
previously hypothesized that in these experiments the
interference results from unwanted generalization because
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there is no change in context associated with the change from
mapping A to mapping B [11].

In this study, we tested a series of hypotheses about the role
of context in generalization of motor learning. We used an
experimental paradigm that built on our previous finding
that kinematics and dynamics are learned independently [12].
Specifically, a visuomotor rotation is learned separately from
novel inertial dynamics. Our first hypothesis was therefore
that the same rotation should transfer across different
effectors, even though they have very different dynamics.
The second hypothesis was that although rotation learning
may be effector-independent, a change in effector would
nevertheless serve as a powerful contextual cue to allow
learning and recall of opposite rotations. The third hypoth-
esis was that the degree to which learning generalizes between
two contexts is not fixed but rather depends on the history of
previous training in those two contexts.

In current theoretical approaches to motor learning,
adaptation is viewed as a process in which prediction errors
result in proportional changes in parameter estimates [13–
16]. The mechanism of error-dependent change is the
Rescorla-Wagner rule [17], also known as the ‘‘delta rule’’ or
LMS (least means squared) rule, in which the generalization
depends only on the contextual cues that are present. This
computational framework assumes that generalization re-
mains history invariant. Statistical models of learning provide
an alternative way of thinking [18]. They emphasize both the
prediction error and the uncertainty associated with param-
eter estimates. Critically, parameter uncertainty depends on
the history of contexts, which in turn dictates generalization.
For example, consider a classical conditioning task in which
an animal learns to associate two different cues with a reward
[19]. Suppose that a training set includes mostly instances in
which both cues are present (say, a light and a tone). The
animal learns that each cue predicts some fraction of the
reward. However, it also accumulates information about the
history of the trials and stores it in the uncertainty of the
‘‘weights’’ for each cue. As a result, when the reward is
presented with only one cue, the statistical model predicts
that while error should increase the weight associated with
the present cue, it also should decrease the weight of the
absent cue. That is, the animal generalizes the error to the
unavailable contextual cue because in the past, the two cues
appeared together [20]. Clearly, an animal that never
observed the two cues together would have no reason to
generalize prediction errors associated with one cue to the
other.

Here we extend this statistical approach to the problem of
motor learning, as a first step in understanding the origin of
motor generalization. We first demonstrate that adaptation
to a visuomotor rotation transfers from the arm to the wrist
but not from the wrist to the arm. We then show that
switching the limb segment used to move the hand can serve
as a powerful contextual cue that allows learning of opposite
visuomotor rotations in close temporal proximity. In effect,
learning in a particular limb segment context can inhibit
subsequent inter-segment generalization, resulting in the
ability to maintain a different map for each context. We show
that these results are supported by a single Bayesian model of
motor learning in which generalization depends on the
history of prior motor behavior.

Results

Participants moved a cursor, which represented position of
the tip of the index finger, to point to targets in two contexts.
In the first, change in fingertip position was due to planar
two-joint arm movements (wrist and fingers immobilized). In
the second, change in fingertip position was due to move-
ments of the wrist (shoulder and elbow immobilized). Our
experimental goal was to show that the implicit memory of
the effector used to learn a visuomotor rotation could serve
as a contextual cue for recall.

Experiment 1. Savings and Interference Occurred for
Rotation Learning with the Wrist
‘‘Savings’’ refers to the observation that performance

during re-learning is better than initial learning. To establish
that rotation learning at the wrist showed savings and
interference in the same manner as previously reported for
planar armmovements [12,21], we compared learning in three
groups of participants. One group (group 1; Table 1) learned a
308 rotation at the wrist (Rwrist) on day 1. The second group
(group 2; Table 1) learned Rwrist on day 1 and then re-learned
Rwrist 24 h later (day 2). This group showed savings, as re-
learning of Rwrist on day 2 had considerably less error (Figure
1A). The third group (group 3; Table 1) learned a 308 counter-
rotation (CRwrist) 5 min after Rwrist (Figure 1B). Performance
of CRwrist was worse than Rwrist (see Application of the Theory
to the Experiments, in Results), clear evidence for anterograde
interference by aftereffects from Rwrist onto CRwrist. Learning
of CRwrist 5 min after Rwrist caused catastrophic interference:
performance on day 2 was not better than naive (Figure 1B
and 1C). However, it appeared that there was an asymmetry in
the savings and interference effects: savings, by definition,
showed a marked improvement in learning (Figure 1A)
whereas interference returned participants to a near naive
state but not significantly worse (Figure 1B).

Experiment 2a. Learning Was Slower with the Arm than
with the Wrist
On day 1, some participants (group 4; Table 1) learned

Rwrist while other participants (group 5a, Table 1) learned the

Table 1. Participant Groups and Experimental Protocol

Experiment
Number

Group
Number (n)

Initial
Learninga

Interference
(5 min)

Relearning
(24 h)

Experiment 1 Group 1 (6) Rwrist
Group 2 (6) Rwrist Rwrist
Group 3 (6) Rwrist CRwrist Rwrist

Experiment 2 Group 4 (6) Rwrist Rarm
Group 5a (6) Rarm Rwrist
Group 5b (3) Rshoulder Rwrist
Group 5c (3) CRarm CRwrist
Group 5d (3) Rwrist Rshoulder
Group 6 (6) Rarm CRarm Rwrist

Experiment 3 Group 7 (6) Rwrist CRarm Rwrist
Group 8 (6) CRarm Rwrist

Experiment 4 Group 9 (6) Rwrist CRarm CRwrist
Group 10 (6) CRwrist

aWrist and arm baselines performed (in random order) before rotations in all groups.
DOI: 10.1371/journal.pbio.0040316.t001
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same task with the arm (Rarm). Interestingly, we found that
learning with the arm was significantly slower than learning
with the wrist (mean difference ¼ 5.138, p ¼ 0.042). One
possible explanation for this difference is that cursor feed-
back for the arm was veridical (it was projected on top of the
hand) during unperturbed trials, whereas it was projected
onto a vertical screen for the wrist. To control for this, we
trained a separate group of participants (group 5b) to move
the cursor on the vertical screen with shoulder movements
alone, Rshoulder (no motion in elbow or wrist). Once again we
observed that learning rates for the wrist were significantly
faster than for the arm (mean difference¼6.468 per 6 cycles, p
¼ 0.027).

Experiment 2b. Learning Transferred from Arm to Wrist
but Not from Wrist to Arm

On day 2, participants in each group re-learned with the
other limb segment, i.e., those who had trained with the wrist
were tested on the arm and vice versa (Figure 2A–2C). We
found robust transfer from Rarm on day 1 to Rwrist on day 2 in
group 5a (Figure 2A and 2C) and Rshoulder on day 1 to Rwrist on
day 2 in group 5b (inset, Figure 2A). Similarly, there was
transfer from counter-rotation at the arm (CRarm) on day 1 to
CRwrist on day 2 (group 5c), which was not significantly
different from group 5a (mean difference¼ 0.4758, p¼ 0.857).
Therefore, the degree of savings seen from arm to wrist was
independent of the direction of the rotation and of whether
we used a vertical screen or horizontal projection on top of
the hand. In contrast, there was no significant transfer from
Rwrist on day 1 to Rarm on day 2 (group 4; Figure 2B and 2C) or
from Rwrist on day 1 to Rshoulder on day 2 (Group 5d; Figure
2B, inset). We ran a control study to check that the transfer
from arm to wrist could be interfered with. As expected,
transfer from Rarm to Rwrist was interfered with when CRarm

was learned 5 min after Rarm (group 6; Table 1): there was no
significant difference between Rwrist on day 1 (group 1) and
Rwrist on day 2 (group 6) (mean difference ¼ "1.046, p ¼

0.6429). Thus, errors experienced with arm movements
benefited subsequent learning with the wrist, but not vice
versa. This result is congruent with previous reports of
asymmetric transfer of prism adaptation [6,7].

Experiment 3. Prior Wrist Training Blocked Interference
from Arm to Wrist
Experiment 1 established that savings and interference

occurred for rotation learning with the wrist. In experiment
2, we found that learning at the arm transferred to the later
testing with the wrist, which would suggest that learning of a
counter-rotation at the arm would interfere with a prior
memory acquired with the wrist. That is, if participants
started with Rwrist training followed by CRarm training, then
there should be no savings on day 2 when participants were
retested on Rwrist. Contrary to this, and consistent with a
contextual role for the effector used to learn the rotation, we
found that there was significant savings for Rwrist on day 2
despite learning CRarm only 5 min after Rwrist on day 1 (group
7; Table 1) (Figure 3A and 3B). Savings were not significantly
different from those seen for Rwrist from day 1 to day 2 (p ¼
0.12). To exclude the possibility, albeit implausible, that
savings for Rwrist resulted from learning of CRarm rather than
Rwrist, we had a separate group of participants (group 8;
Table 1) learn only CRarm on day 1 and then Rwrist on day 2.
As expected, no savings were found for Rwrist (Figure 3B).
Thus, similar to the asymmetry of savings and interference
effects seen in experiment 1, rotation learning at the arm
transferred to the wrist, but counter-rotation learning at the
arm did not make rotation learning at the wrist worse than
naive. Similarly, there was no significant difference in
performance between group 8 who learned CRarm naive
and group 7 who learned CRarm 5 min after Rwrist (p ¼ 0.8).
Therefore, without the need for repeated alternation,
participants learned and retained two opposite rotations
within 5 min of each other nearly as well as if they had
learned them separately.

Figure 1. Savings and Interference Occur for Rotation Learning at the Wrist

(A) Rwrist on day 1 (group 1, black circles and black curve) and on day 2 (group 2, white squares and dashed curve). Learning is shown by progressive
reduction across cycles in the directional error at peak velocity. Points, representing the group average with standard error for each cycle, are fitted by a
double-exponential function. There were substantial savings from day 1 to day 2.
(B) Rwrist on day 1 (group 1, black circles and black curve) and after interference on day 2 (group 3, white squares and dashed curve). There were no
savings from day 1 to day 2 after interference with CRwrist.
(C) Bar graph showing a statistically significant difference in the reduction in mean directional error in the first six cycles for day 1 versus day 2 (groups 1
and 2, mean difference¼ 9.868, p , 0.0001). This difference is absent with interference, with no statistically significant difference in the reduction in
mean directional error in the first six cycles for day 1 versus day 2 (groups 1 and 3, mean difference¼"2.648, p¼ 0.22).
DOI: 10.1371/journal.pbio.0040316.g001
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Experiment 4. Prior Wrist Training Blocked Transfer from
Arm to Wrist

In experiment 3, we showed that a change in effector
could prevent interference: CRarm did not interfere with
prior learning of Rwrist. In the final experiment, we asked
whether, conversely, transfer from arm to wrist could be

blocked by a prior history of wrist training. This experiment
directly tests the hypothesis that interference seen in ‘‘A !
B ! A’’ experiments could be caused by an inhibitory
context effect. This is because there is no a priori reason
why the interference condition, if it is acting through a
context effect, needs to be interposed between the other
two. B ! A ! A should also lead to interference with re-
learning of A.
Participants first learned Rwrist and then 5 min later

learned CRarm (group 9; Table 1). On day 2, they then learned
CRwrist. We had shown in experiment 2 that Rarm transferred
to Rwrist (group 5a), and, similarly, that CRarm transferred to
CRwrist (group 5c). However, we found that transfer of savings
from arm to wrist was blocked by previous experience of
Rwrist, i.e., learning R in the context of the wrist inhibited
subsequent transfer of CR from the arm to the wrist (Figure
4A and 4B). In contrast to experiment 2, there was no transfer
of CRarm to CRwrist, and the learning rate of CRwrist on day 2
was not significantly different than learning of CRwrist on day
1 (group 10; Table 1). This failure to show transfer with
CRwrist is not due to learning of CRwrist being somehow
inherently more difficult than learning of Rwrist, because
there was no significant difference in the rate of learning
Rwrist or CRwrist on day 1 (comparing groups 1 and 10, p ¼
0.14), i.e., clockwise and counter-clockwise rotations are
learned at the same rate. Thus, we found that learning of
Rwrist did not interfere with subsequent learning of CRarm and
yet the prior learning of Rwrist prevented subsequent transfer
from CRarm to CRwrist. This result cannot be explained by
either retrograde interference or by aftereffects. Instead, it
strongly suggests that limb segment use acts as a contextual
cue that blocks generalization.

Figure 2. Savings Transfers from Arm to Wrist but Not from Wrist to Arm

(A) Rwrist on day 1 (group 1, black circles and black curve) and Rwrist on day 2 after Rarm on day 1 (group 5a, white squares and dashed curve). There were
substantial savings from Rarm on day 1 to Rwrist on day 2. Inset: Rwrist on day 1 (group 1, black circles and black curve) and Rwrist on day 2 after Rshoulder on
day 1 (group 5b, white squares and dashed curve). There were substantial savings from Rshoulder on day 1 to Rwrist on day 2 (mean difference¼7.758 , p¼
0.0157). Inset axes scaled as in main figure.
(B) Rarm on day 1 (group 5, black circles and black curve) and Rarm on day 2 after Rwrist on day 1 (group 4, white squares and dashed curve). There were
no significant savings from Rwrist on day 1 to Rarm on day 2. Inset: Rshoulder on day 1 (group 1, black circles and black curve) and Rwrist on day 2 after
Rshoulder on day 1 (group 5b, white squares and dashed curve). There were no significant savings from Rwrist on day 1 to Rshoulder on day 2 (mean
difference¼ 4.58 , p¼ 0.1). Inset axes scaled as in main figure.
(C) First pair of bars showing a statistically significant difference in the reduction in mean directional error in the first six cycles for Rwrist on day 2 , after
Rarm on day 1, compared to Rwrist on day 1 (groups 1 vs. 5a, mean difference¼ 5.528, p¼ 0.01). Second pair of bars showing no statistically significant
difference in the reduction in mean directional error in the first six cycles for Rarm on day 2, after Rwrist on day 1, compared to Rarm on day 1 (groups 5a
versus group 4, mean difference¼ 3.528, p ¼ 0.12).
DOI: 10.1371/journal.pbio.0040316.g002

Figure 3. Rotation Learning at the Wrist Is Not Interfered With by
Counter-Rotation Learning at the Arm

(A) Rwrist on day 2, after Rwrist followed by CRarm 5 min later on day 1
(group 7, white squares, dashed curve). There was savings from Rwrist on
day 1 to Rwrist on day 2 despite CRarm. The thick black curve represents
Rwrist on day 1 (group 1).
(B) Bar graph showing a statistically significant difference in the
reduction in mean directional error in the first six cycles for Rwrist on
day 1 versus day 2 (groups 1 and 7, mean difference¼ 6.498, p¼0.0036).
This difference was absent when only CRarm was learned on day 1, with
no statistically significant difference in the reduction in mean directional
error in the first six cycles for day 1 versus day 2 (groups 1 and 8, mean
difference¼ 0.3288, p¼ 0.88).
DOI: 10.1371/journal.pbio.0040316.g003
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A Statistical Model of Motor Adaptation with Contextual
Cues

The experimental data produced three observations. First,
visuomotor rotations associated with arm motion produced
significantly slower adaptation rates than rotations associated
with wrist motion. Second, training with the arm benefited
subsequent learning with the wrist, but training with the wrist
did not benefit learning with the arm. Finally, despite the fact
that naive participants exhibited transfer from arm to wrist,
this transfer was blocked if participants had prior training
with the wrist (experiments 3 and 4). We will show that these
results are generally consistent with a statistical formulation
of the learning problem in which motor adaptation depends
not just on the error in a given trial, but also on the prior
history of training.

Participants were trained in two situations: with motion of
the wrist, and with motion of the arm. In each case, a cursor
indicated end-effector position (hand or finger). The com-
puter imposed a perturbation of this position via a spatial
rotation. Let us represent these positions in polar coordi-
nates and focus only on their angular component. That is, if
in trial n the end-effector angle is e(n) and the imposed
rotation is r(n), then the computer displays the cursor at y(n):

yðnÞ ¼ eðnÞ þ rðnÞ ð1Þ

Now suppose that from the learner’s point of view, the cursor
angle that he observes is related to the angle of his end-
effector, as well as a perturbation that depends on the context
in which the end-effector was moved, plus some sensory noise.
Let c(n) be a binary vector that specifies this context and w(n) be
the weight vector that specifies the contribution of the context
to the perturbation. That is, the learner hypothesizes that:

rðnÞ ¼ cðnÞTwðnÞ

yðnÞ ¼ eðnÞ þ cðnÞTwðnÞ þ eðnÞy eðnÞy ;Nð0;r2Þ
ð2Þ

The term eðnÞy is a random variable that signifies noise in the
sensory system of the learner and superscript T is the
transpose operator. We assume that the sensory noise is

normally distributed with mean zero and variance r2. Now
suppose that the learner hypothesizes that perturbations are
not permanent, and are affected by some noise themselves:

wðnÞ ¼ Awðn"1Þ þ eðnÞw eðnÞw ;Nð0;QÞ ð3Þ

The term A is a constant and stable matrix, and expresses the
belief that perturbations have a finite timescale. (A square
matrix is considered to be stable if and only if the magnitudes
of all the eigenvalues are smaller than one). The term eðnÞw is a
random vector that signifies noise that affects the perturba-
tions. It is normally distributed with mean zero and diagonal
variance-covariance matrix Q.
On trial n, the experimenter instructs the learner to move

the end-effector to target location yðnÞt . To do so, the learner
predicts the rotation that he expects will be present in this
context brðnÞ ¼ cðnÞT bwðnÞ and moves the end-effector to cancel
that perturbation:

eðnÞ ¼ yðnÞt " br ðnÞ ¼ yðnÞt " cðnÞT bwðnÞ ð4Þ

The experimenter provides feedback to the learner by
displaying the cursor at position y(n). The learner observes
an error between the cursor position and the target,
yðnÞ " yðnÞt . For the learner, the objective is to minimize the
expected value of the squared errors, i.e., E½ðy" ytÞ2'. This
occurs when the learner minimizes the expected value of the
squared difference between w and bw. The solution for this
problem is an iterative algorithm described by Kalman [22].
On trial n, the learner has performed n " 1 trials and has

observed the associated consequences y(n). We use the term
bwðnjn"1Þ to label the learner’s estimate on trial n based on the
previous n " 1 observations. On trial n, based on this prior
estimate, the learner moves the end-effector to location e(n):

eðnÞ ¼ yðnÞt " cðnÞT bwðnjn"1Þ ð5Þ

After the trial is complete, the learner observes y(n). The
difference between this position and the target is an error
that the participant will learn from, resulting in a posterior
estimate bwðnjnÞ:

bwðnjnÞ ¼ bwðnjn"1Þ þ kðnÞðyðnÞ " yðnÞt Þ ð6Þ

The vector k(n) is called the Kalman gain. It specifies how the
error will affect the context in which it was experienced, and
how the error will generalize to other contexts. The crucial
idea is that this generalization is not arbitrary, but depends
on the learner’s uncertainty regarding his or her current
parameter estimates. We label this uncertainty with matrix P
and define it as the variance covariance of our parameter
errors:

Pðnjn"1Þ [E½ewðnjn"1Þewðnjn"1ÞT ' ð7Þ

where the vector ew is defined as ewðnjn"1Þ [wðnjn"1Þ " bwðnjn"1Þ.
The posterior estimate bwðnjnÞ that minimizes the trace of
matrix P is given by Equation 6 when the gain is set to:

kðnÞ ¼ Pðnjn"1ÞcðnÞ

cðnÞTPðnjn"1ÞcðnÞ þ r2 ð8Þ

After observing y(n), the posterior estimate will have the
variance-covariance matrix described by:

PðnjnÞ ¼ ðI " kðnÞcðnÞTÞPðnjn"1Þ ð9Þ

The learning rule in Equation 6 is equivalent to a Bayesian

Figure 4. Antecedent Learning of the Rotation with the Wrist Blocks
Subsequent Transfer of the Counter-Rotation from Arm to the Wrist

(A) CRwrist on day 2, after Rwrist followed by CRarm 5 min later on day 1
(group 9, white squares, dashed curve). Also shown is CRwrist on day 1
(group 10, black circles, black curve). There were no savings for CRwrist on
day 2 compared to CRwrist on day 1.
(B) Bar graph showing no statistically significant difference in the
reduction in mean directional error in the first six cycles for CRwrist on day
1 versus day 2 (groups 9 and 10, mean difference¼"0.148, p¼0.947).
DOI: 10.1371/journal.pbio.0040316.g004
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integration step. In this step, the learner weights her prior estimate
bwðnjn"1Þ with uncertainty Pðnjn"1Þ with the evidence observed in the
current trial (Equation 2). The gain vector k expresses the optimal
weighting of the two sources of information. We can simplify
Equations 8 and 9 to produce a more intuitive formulation of the
learning process:

ðPðnjnÞÞ"1 ¼ ðPðnjn"1ÞÞ"1 þ cðnÞcðnÞT

r2 ð10Þ

kðnÞ ¼ PðnjnÞcðnÞ

r2 ð11Þ

From Equation 11 we see that the learning gain depends on
parameter uncertainty and this uncertainty depends on the
history of contexts c(n) in which prior trials were performed
(Equation 10). Therefore, the history of prior contexts
crucially defines parameter uncertainty, which in turn defines
the generalization pattern. Furthermore, increased uncer-
tainty will result in increased sensitivity to error, and
therefore faster learning. Our final step is to express the
prior estimate in trial nþ 1. Based on the hypothesis that we
made about the learner in Equation 3, we have:

bwðnþ1jnÞ ¼ AbwðnjnÞ

Pðnþ1jnÞ ¼ APðnjnÞAT þ Q
ð12Þ

As an example, consider a scenario in which there are two
contexts in which movements can be made (that is, c is a 23 1
binary vector). If both contexts are repeatedly present in a
sequence of trials, then c(n) ¼ [1 1]T, then the off-diagonal
terms in the matrix P will become negative (Equation 10).
Now, if in a given trial, only one cue is present, that is c(n) ¼
[1 0]T, the Kalman gain will be a vector with a first term that
is positive but a second term that is negative. As a result, the
error in that trial will affect the estimate for both the context
that is present and the context that is absent. In contrast, if
the two contexts generally occur independently, then the off-
diagonal terms in the uncertainty matrix will be close to zero.
In this case, error experienced in one context will not
generalize to the other context. We see that because
parameter uncertainty depends on contextual history,
sensitivity to error and its generalization will also be history
dependent.

In summary, prior history plays a crucial role in the
Bayesian learning process. In contrast, in LMS the parameter
estimates for a context can change only when that context is
present:

bwðnjnÞ ¼ bwðnjn"1Þ þ gðyðnÞ " yðnÞt ÞcðnÞ ð13Þ

We will exploit this difference between LMS and Bayesian
learning and show that the experimental data are generally
consistent with a Bayesian learning process.

Application of the Theory to the Experiments
The learner experienced errors in two situations: while

moving the cursor with the shoulder and elbow joints of the
arm, and while moving it only with the wrist. The arm motion
did not involve motion of the wrist as viewed in proprio-
ceptive coordinates. However, arm motion produced motion
of the hand as viewed in an extrinsic space. In contrast,
motion of the wrist did not involve motion of the upper arm
in either extrinsic or intrinsic space. To explain the data, we
need to make two crucial assumptions: First, let us assume

that for the learner, the context is specified by whether a
body part experienced motion in extrinsic space. That is, c(n)

¼ [0 1]T if the trial involved only motion of the hand (i.e., a
wrist trial), and c(n)¼ [1 1]T if the trial involved motion of both
the hand and the upper arm (i.e., an arm trial). Second, we
assumed that in daily activities of a typical participant, she is
likely to experience coupled motion of the hand and upper
arm. That is, when the upper arm moves, so does the hand
(where motion is defined in extrinsic space).
To begin each simulation, we needed to specify the learner’s

prior. To produce the prior uncertainty matrix Pð1j0Þ, we
started from an arbitrary initial value and then assumed that
before the participant had come to the lab and participated in
the experiment, in 95% of ‘‘trials,’’ the learner had been in a
context in which motion of the upper arm was accompanied
with motion of the hand. That is, we used Equation 10 with the
assumption that in 95% of trials, c(n) ¼ [1 1]T, and in the
remaining 5% of the trials, c(n)¼ [1 0]T. The prior uncertainty
matrix Pð1j0Þ always converged to a matrix with negative off-
diagonal elements (the actual value of the matrix depends on
the measurement noise r2, which we arrived at by fitting to the
measured data, see Materials and Methods). Furthermore, we
assumed that at start of the experiment, the participant was
naive about the rotations, i.e., bwð1j0Þ ¼ ½ 0 0 'T .
Let us consider Rwrist training. The experimenter sets r(n)¼

30 and asks the learner to move the cursor with the wrist. The
learner assumes that the context is c(n) ¼ [0 1]T. Figure 5A
shows the two components of the vector bwðnjn"1Þ, i.e., the
weight associated with the upper arm and the weight
associated with the wrist. With each trial, the learner’s
estimate of the perturbation imposed on the wrist increases
toward 308. However, despite the fact that the context is wrist
only, the estimate for the upper arm becomes negative,
resulting in an estimate for the whole arm (upper armþwrist)
that is only slightly positive. Therefore, the model reproduces
the result that wrist training will not have a significant impact
on subsequent training with the arm. Prior training, in which
most actions involved both motion of the upper arm and the
wrist and therefore produced an uncertainty matrix with
negative off-diagonal elements, is directly responsible for this
generalization pattern.
Next, consider Rarm training. Figure 5B shows the

simulation results when we set r(n) ¼ 30 and adapt in the
arm context. When we set c(n)¼ [1 1]T, the observed errors will
produce changes in estimates associated with both upper arm
and the wrist, but because the covariance in the uncertainty
matrix is negative, the learning gains (Kalman gain) are much
smaller in the arm context than when the task is performed in
the wrist context. Consequently, the arm context is learned
more slowly. Despite the fact that the uncertainty matrix
Pð1j0Þ and the initial estimate bwð1j0Þ were identical in the two
simulations of Figure 5A and 5B, the errors declined about
twice as slowly in the context of the arm as compared to the
wrist. Furthermore, the same uncertainty matrix dictates a
generalization from arm to wrist, as the Kalman gain is
positive for both the upper arm and wrist. As a consequence,
arm training results in the estimate for the wrist to increases
to about 158. If we now test for Rwrist, the wrist context has
already learned half of the perturbation and will show
transfer.
Let us now consider the observations made in experiments

3 and 4. We simulated initial training with the wrist onþ308,
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and then training with the arm in"308 (Figure 5C). Theþ308
wrist condition produced a"238 estimate for the upper arm.
Now, when we simulated the arm "308 trials, the model
showed a large change in the estimate for the upper arm but a
small change in the estimate for the wrist. If we compare the
Kalman gains for Figure 5C with Figure 5B, we see that if the
wrist context precedes the arm context, then the general-
ization pattern of the arm context is significantly different.
The extended wrist training increases the arm’s uncertainty,
making the gain for the upper arm about twice as large as for
a naive participant. Therefore, when the arm context follows
the wrist context, most of the error is now attributed to the
upper arm (where the uncertainty is greatest). By end of the
training, the arm is at "308, but the wrist is still near þ208.
Effectively, the model learns that each context produces a
different estimate. Finally, for completeness, we also ran a
simulation (unpublished data) to check the degree to which
CRwrist interferes with transfer of Rarm on day 1 to Rarm on
day 2, and found savings close to that seen without
intervening learning of CRwrist. This result is not unexpected

given that, experimentally, wrist learning did not transfer to
the arm.
To illustrate the model’s strengths and weaknesses, in

Figure 6 we plotted the data from all the experiments as well
as the model’s performance on each experiment. For
example, in Figure 6A and 6B we re-plotted the data points
in Figure 1A and 1B, but now the lines are model output
rather than fits to the data. One of the strengths of the model
is that it correctly produces learning with multiple timescales:
the participants and the model are both very sensitive to
error in initial trials of training, but then become less
sensitive as trial numbers increase. This is because uncer-
tainty tends to decrease with training (Figure 5A), which in
turn makes the model less sensitive to prediction errors.
Other strengths of the model include asymmetric transfer
(Figure 6C and 6D), slower learning with the arm than with
the wrist (Figure 6D and 6A), and history-dependent general-
ization from arm to wrist (Figure 6E).
However, the model has important weaknesses. First, in

experiment 1 when Rwrist was followed by CRwrist, the model

Figure 5. Simulation Results

Each column displays the movement errors y(n) " yt , the two components of the parameter vector bwðnþ1jnÞ (and their linear combination), the two
components of the Kalman gain vector k(n), and the components of parameter uncertainty matrix pðnþ1jnÞ . For bw, the plot includes the upper arm
estimate bw1 , the wrist estimate bw2 , and the arm estimate bw1 þ bw2. For P, the plot includes the upper arm variance P1,1, the wrist variance P2,2, the
covariance P1,2 (which is equal to P2,1), and the variance for the arm which is Pa ¼ P1,1 þ P2,2 þ P1,2 þ P2,1. The context for each training situation is
specified by the vector c. All simulations begin at the same initial conditions.
(A) Simulation of Rwrist. With each trial, the estimate for the wrist increases toward 308. Despite the fact that only the wrist context is present, the
estimate for the upper arm becomes negative. This is because the uncertainty matrix has negative off-diagonal elements P1,2, which arise from the prior
assumption that motion of the upper arm usually results in motion of the wrist (in extrinsic space).
(B) Simulation of Rarm. Errors produce changes in the estimates of both the upper arm and the wrist, resulting in transfer to the wrist. Despite identical
initial conditions, learning with the arm is slower than learning with the wrist. (In the subplots, the red line associated with the upper arm is hidden
behind the green line associated with the wrist).
(C) Simulation of Rwrist followed by CRarm. Despite the fact that in the naive condition, arm training transferred to the wrist (part B), prior wrist training
blocked this transfer. By the end of training, the model acquired R at the wrist and CR at the arm. To see the reason for this, compare the Kalman gain at
the start of arm training in this subplot with the same arm training in subplot B. In part C, gain for the upper arm is nearly twice as high as in part B. In
contrast, in part C, the gain for the wrist is about half as high as in part B. The prior training with the wrist changed the pattern of generalization.
DOI: 10.1371/journal.pbio.0040316.g005
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predictedmuch stronger interference than we observed in our
data (Figure 6F). The comparison of the data (red dots in
Figure 6F) with the model (red line in Figure 6F) is interesting
because the model correctly predicts that the rate of
adaptation in CRwrist (blue dots) will be much slower than in
Rwrist (red dots). This is because training in Rwrist significantly
reduces parameter uncertainty, resulting in slower learning in
the subsequent CRwrist training. Yet, the model cannot explain
why initial performance (cycle 1) is so much better than
expected. A likely possibility is that the 5 min of rest between
the tasks produced some forgetting, something that we did not
include in our model. Second, in experiment 4 when Rwrist was
followed by CRarm, the model predicted moderately strong
interference on subsequent testing on CRwrist (the model
predicted that performance on the first cycle should be
significantly worse than observed). In contrast, the data (Figure
6G) showed no statistically significant evidence of worse
performance for CRwrist, although transfer from CRarm to
CRwrist was completely blocked. Again, the rate of adaptation
was comparable in the model and the actual data. In these
instances, the model predicted that prior training should have
biased the learner, particularly in the first cycle. Yet the bias
that we observed was generally smaller than expected.

Discussion

When participants learned to control the trajectory of a
rotated cursor with their arm or with their wrist, they

exhibited complex patterns of behavior: They learned the
arm task more slowly than the wrist. Their arm training
generalized to the wrist, but the wrist training did not
generalize to the arm. Finally, in participants that had prior
training with the wrist, the expected generalization from the
arm was blocked. Although the first two findings may seem
like idiosyncrasies of generalization between limb segments,
the third observation showed that a delta rule mechanism,
which guides learning through gradual adjustments based
only on recent errors, is inadequate to explain blocking of
generalization across limb segments based on prior history of
training. Instead, a ‘‘nonlinear’’ or context-based gating
mechanism is suggested, in which history of limb segment
use acts as the contextual cue. This history-dependent change
in generalization allowed the participants to learn two
distinct ‘‘maps’’ simultaneously: they learned a clockwise
rotation with their wrist and a counter-clockwise rotation
with their arm. In effect, they were able to ‘‘protect’’ their
prior learning from subsequent generalization.
Why did the pattern of generalization change? Our thought

was that generalization may depend on statistical properties
of the task, which itself depends on the history of training. We
imagined that the learner collected statistics on how the limb
was used in the task, and generalized in order to minimize the
expected value of his or her squared errors. A Bayesian
description of the learning problem successfully predicted
blocking of generalization based on prior limb segment use.
Moreover, this model also predicted the previously unex-

Figure 6. Simulation Results (Lines) along with the Measured Data (Dots) from All Experiments

In the legend for each subplot, the vertical line refers to a 24-h break.
(A) Savings from Rwrist day 1 to Rwrist day 2 (experiment 1).
(B) Catastrophic interference when Rwrist on day 1 is followed by CRwrist on day 1 and Rwrist is relearned on day 2 (experiment 1).
(C) Rarm transfers to Rwrist (experiment 2).
(D) Learning Rarm is slower than Rwrist, and Rwrist shows little transfer to Rarm (experiment 2).
(E) Prior learning of Rwrist blocks interference by CRarm (experiment 3).
(F) Learning of Rwrist interferes anterograde with CRwrist learned 5 min later (experiment 3).
(G) Prior learing of Rwrist blocks transfer of CRarm to CRwrist (experiment 4).
DOI: 10.1371/journal.pbio.0040316.g006
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plained proximal–distal asymmetry in transfer of learning.
Thus, motor learning appeared to depend not only on motor
error, but also on the history of prior actions.

Transfer Was Asymmetric between Contexts
To manipulate context, we built upon our previous

observation that visuomotor rotations are learned independ-
ently of novel dynamics [12]. Our data suggested that this was
because rotations are learned by reducing visual errors
whereas novel dynamics are learned proprioceptively. This
led us to hypothesize that we could separate the visual error
signal used to learn a new rotated mapping from the
proprioceptive signal used to label a given context. The
critical idea about context is that the contextual signal should
be irrelevant to adaptation itself [23], which is the reason why
arbitrary explicit cues, e.g., colors, have been so widely used
experimentally. We chose a change in effector as the arbitrary
contextual cue because we hypothesized that the adaptation-
independent cue should be implicit rather than explicit. An
important clue that this might indeed be the case comes from
two observations. First, generalization of prism adaptation is
velocity dependent [24], which suggests that the mapping is
gated by the dynamic conditions under which it was learned.
Second, a change in configuration of the arm allowed
participants to eventually learn two opposing force fields
[25]. However, interpretation of this second result is
complicated by the fact that a change in configuration not
only changes the context but also changes the force-field
adaptation task itself, i.e., the same sensory signals provide
error and context information. Thus, it cannot be concluded
that the configuration change is purely a contextual effect.

In experiment 1 we showed that for naive participants,
learning in the context of the wrist was faster than in the
context of the arm. Furthermore, learning transferred from
the arm to the wrist but not vice versa. Similar asymmetric
transfer has been previously observed in prism adaptation. In
that case, there was transfer from the shoulder to the wrist,
but not from the wrist to the shoulder [6,7]. If we begin with
the assumption that motion of the upper arm will inevitably
result in motion of the wrist (or hand) in extrinsic space, then
the model predicts both the observation that wrist learning
will be faster than arm learning, and the asymmetric transfer
from arm to wrist. It is of interest to ask how the contextual
signal is conveyed. When participants learned the rotation
with the arm, the wrist and fingers were immobilized with a
splint, which means that there was no significant rotation of
wrist joints to provide an intrinsic proprioceptive signal that
correlated with cursor motion. Cursor motion was centered
on the hand and the hand moved obligatorily with the arm.
Thus during the arm context, both the upper arm and wrist
moved in extrinsic coordinates. In contrast, when the
rotation was learned around the wrist, the upper arm did
not move in intrinsic or extrinsic coordinates. This leads to
the novel idea that the relevant contextual cue is an implicit
memory of motion of the limb segment in association with
the reference frame in which prediction errors occurred.
This still leaves unanswered what form the memory of limb
motion takes. The memory is likely to have a proprioceptive
component that identifies the motion as that of the whole
arm or just the wrist. Interestingly, this memory might be
fairly abstract because savings and interference for rotation
learning can transfer across arms [26].

A Change in Context Allowed Two Opposing Visuomotor
Maps to Be Learned in Close Temporal Proximity
Experiment 3 was designed to test the prediction that

identification of the right contextual cue would prevent
generalization as interference between opposite visuomotor
maps. We began with Rwrist training and then immediately
trained participants in CRarm. Because in experiment 2 we
had found that arm training transferred to the wrist, one
might expect that CRarm would catastrophically interfere with
previous Rwrist training. However, we found that relearning of
Rwrist showed a degree of savings comparable to when there
was no intervening learning of CRarm. This result would not
be expected if savings and interference were simply recip-
rocal processes based only on the direction of visual errors.
Indeed, if this were the case, then an interference effect
should have occurred when the rotation at the arm changed
sign. Instead, savings were seen—the switch in effector led to
dissociation between interference and savings effects. This
result contrasts with previous attempts in recent years, largely
unsuccessful, to identify contextual cues that will allow
switching between visuomotor maps without interference.
In a recent study using a joystick task, participants learned
opposite 308 rotations within 15 min of each other [27]. Use
of either a verbal or a color cue to separately identify the
rotation and counter-rotation failed to prevent interference.
A similar failure of color cues has been seen for larger
rotations [28]. Similarly, attempts to prevent interference
between opposing force fields with explicit symbolic cues
have met with mixed success at best. In experiments in which
participants alternated regularly between learning blocks of
each force field, interference was not prevented by an explicit
cue [25]. Monkeys were able to use a color cue to switch
between viscous force fields but only after tens of thousands
of trials of blocked training over several months [29]. Despite
3 d of training, human participants were unable to learn two
randomly alternated force fields using color cues [30].
Another study found that this switching was possible only
after very extensive training [31]. Better results were obtained
when a change in arm configuration served as a cue to switch
between two viscous force fields [25]. Our results in experi-
ment 3 are quite distinct from these previous reports because
interference was prevented at the first switch between
rotation directions after an interval of only 5 min.
Experiment 4 was designed to complement experiment 3. It

demonstrated that a contextual cue can also prevent general-
ization as transfer. Specifically, previous rotation training at
the wrist prevented subsequent transfer of counter-rotation
training from the arm to the wrist, transfer that would
otherwise have occurred with savings at the wrist (experiment
1). The mechanism is not retrograde because Rwrist was
learned before CRwrist. Nor is the mechanism an anterograde
effect of Rwrist on CRarm, because in experiment 2, we had
found that there was no significant transfer from wrist to arm.
Finally, the result cannot be attributed to an anterograde
effect of Rwrist on CRwrist, because we saw in experiment 1 that
this does not lead to interference. This result provides an
important clue as to why our previous study, and others like it,
using the A1st ! B !A2nd paradigm showed that CRarm

interferes with Rarm to the same degree when Rarm and CRarm

are separated by 24 h as when they are separated by only 5
min. Namely, if rotation direction changes but the context
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does not, i.e., always learned with the arm, then it is the last
rotation learned in that context that is recalled. Therefore,
consolidation, understood as stabilization of memory, may not
be the process interfered with in many experiments that have
used the A1st ! B!A2nd paradigm, although consolidation of
separate internal models almost certainly occurs, as we have
demonstrated previously [11,32,33]. Instead, as mentioned in
the introduction, we suggest that the failure to generalize seen
with the A1st ! B!A2nd paradigm [8–11] and in experiment 4
is caused by a powerful effect of context on retrieval of the
correct rotation at re-learning. Critically, a contextual
mechanism would show the order invariance we observed: B
blocks transfer from A1st to A2nd as effectively with B! A1st

!A2nd (current results) as with A1st ! B !A2nd (previous
results). In both cases, use of the same limb segment context
for rotation A and counter-rotation B is the key factor. Thus,
our demonstration that history of training can alter patterns
of generalization provides an important clue as to how the
brain can recall different motor memories in rapid succession
without interference.

The observations that history changed the patterns of
generalization in experiments 3 and 4 were largely in
agreement with the statistical model. Specifically, with prior
training with the wrist, wrist estimates were hardly affected by
subsequent learning of the counter-rotation with the arm.
The reason for this was that training with the wrist affected
the uncertainty associated with the upper arm. This in turn
channeled most of the error to this part of the effector when
the whole arm was subsequently used in the counter-rotation.
As a result, after wrist and arm training, the model had
acquired different maps for each context, despite the fact
that in naive conditions, one context generalized to another.
A fundamental property of the model was that parameter
uncertainty depended on the history of contexts observed
during training, not the history of errors. That is, the
observed directional error by itself was not an effective
contextual cue. Although in some cases of visuomotor
adaptation, error itself can serve as a contextual cue [34], in
our experiments, targets were presented randomly, which
perhaps made consistent differentiation of clockwise and
counter-clockwise errors difficult. Instead, what matters for
our model is the history of limb contexts and correlations
between them. The model suggests that patterns of general-
ization are a reflection of co-variance between the cues,
consistent with the idea that the brain estimates second order
statistics of action during motor learning.

In this task, it is of great interest that interference
manifests as a return to naive and not worse than naive
levels of performance. This is something that our model
could not explain. It suggests that limb segment context
causes retrieval of the congruent wrist rotation in experiment
3, but not of the incongruent wrist counter-rotation in
experiment 4. Why this asymmetry? It can be speculated that
there is transient retrieval of the counter-rotation, but this is
rapidly suppressed when it does not lead to any reduction in
prediction error. It brings to mind the architecture of
learning suggested for a ‘‘mixture of experts’’ model, in
which errors in prediction are used by a ‘‘moderator’’ to
judge whether a contextually cued ‘‘expert’’ should be
allowed to contribute to an output [35]. Once the expert is
suppressed, both parameter estimates and uncertainty are
reset to baseline levels, i.e., to the naive state.

Conclusions
Our results demonstrate that an implicit memory of the

limb segment used to learn a visuomotor mapping can serve
as a contextual cue for recall of that mapping. The pattern of
generalization across different contexts, either as transfer or
interference, is not invariant, but rather is dependent on the
history of training. When we consider the influence of prior
training within the framework of statistical learning theory,
what emerges is a motor system that learns not just from
prediction error, but also from the history of implicitly
remembered contexts in which training occurred.

Materials and Methods

Participants. A total of 69 right-handed participants (33 men and
36 women, mean age of 29.2 66.4 y) participated in the study. All
participants were naive to the purpose of the experiments, signed an
institutionally approved consent form, and were paid to participate.
There were four experiments, and different participants were
randomly assigned to a particular group within each experiment
(13 groups in total) (Table 1).

Experimental protocol—arm apparatus. Participants sat and
moved a hand cursor by making planar reaching movements of the
shoulder and elbow over a horizontal surface; positioned at shoulder
level. The targets and the start point were projected onto a computer
screen positioned above the arm. A mirror, positioned halfway
between the computer screen and the table surface, reflected the
computer display, producing a virtual image of the screen cursor and
targets in the horizontal plane of the fingertip. Hand positions,
calibrated to the position of the fingertip, were monitored using a
Flock of Birds (Ascension Technology, Burlington, Vermont, United
States) magnetic movement recording system at a frequency of 120
Hz. Anterior–posterior translation of the shoulder was prevented
with a rigid frame around the trunk. The wrist, hand, and fingers were
immobilized with a splint and the forearm supported on an air-sled
system. An opaque shield prevented participants seeing their arms
and hands at all times.

Experimental protocol—wrist apparatus. Participants sat in a chair
and made pointing movements through combinations of abduction–
adduction and flexion–extension movements around the wrist, so as
to point their index finger at targets projected onto a vertical
computer screen. Supination and pronation of the wrist was
prevented with a rigid splint. The participant.s right hand was lightly
taped in a fist position using medical paper tape, and a 1.5-cm
spherical reflective marker was attached to the tape and positioned
over the index finger’s first interphalangeal joint. The hand was
hidden from view. The position of the marker was monitored using a
Qualysis ProReflex video camera (model MCU 240; Qualisys,
Gothenburg, Sweden) equipped with an infrared strobe coupled to
a video digitizer, which records the marker’s position in the vertical
plane with a spatial resolution of less than 1 mm at a frequency of 100
Hz. Hand position was ported to a Macintosh PowerMac G4
computer (Apple, Cupertino, California, United States) running
custom software, which acquired data, controlled experiments, and
updated the display in real time so that participants had continuous
feedback of wrist position visible as a black cursor on the vertical
computer screen.

Experimental protocol—general protocol. Experimental sessions
were run over two consecutive days (day 1 and day 2). Targets were
presented in blocks of 11 cycles of eight targets. Participants were
instructed to make straight out-and-back movements with a sharp
reversal within the target. To ensure that movements were made fast
and to minimize on-line corrections, the black cursor disappeared
after 150ms and the reversal point was indicated by a white square [36]

On day 1, participants were first familiarized with baseline blocks
(no rotation imposed) with the wrist and/or arm apparatus, depend-
ing on which experimental group they were in. Subsequently,
participants performed three training blocks of a rotation (R), in
which the screen cursor was rotated 308 counter-clockwise around
the center of the start location. After a delay of 5 min, certain groups
of participants performed three blocks of the counter-rotation (CR),
in which the screen cursor was rotated 308 clockwise. On day 2,
participants re-learned R.

Experimental protocol—data analysis. For each movement, peak
velocity and reversal points were calculated as reported previously
[3]. We used the directional error at the peak velocity as the measure
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of rotation adaptation. To assess the time course of adaptation to the
imposed rotations, we computed the mean directional error over the
first six cycles of eight movements. Differences between groups were
assessed by comparing the six-cycle measure across groups by analysis
of variance. Pair-wise post-hoc tests were performed with the Fisher
PLSD (protected least significant differences) with a significance level
of 0.05.

Modeling. There were four important parameters in the model,
and we began by setting these parameters to very general values that
were not informed by specific data. The first three parameters were
the state transition matrix A in Equation 3, reflecting how much the
learner forgets from trial to trial, and the state and measurement
noises in Equations 2 and 3. We set these values as follows: A¼ 0.99I,
Q ¼ 0.5I, and r2 ¼ 1, where I is a 2 3 2 identity matrix. The fourth
parameter was A*, which described how much participants forgot
from end of training in day 1 to start of testing on day 2. We set A*

¼ 0.80I. All simulations began with bwð1j0Þ ¼ ½ 0 0 'T . Eq. (10) suggests
that if we know the measurement noise, then we can estimate the
prior by assuming a particular contextual history. The prior
uncertainty Pð1j0Þ was acquired by starting at a random initial
condition and iterating until convergence under the assumption
that before the participant came to the lab, in 95% of ‘‘trials.’’
motion of the upper arm was coincident with motion of the hand,
i.e., c(n) ¼ [1 1]T. For the remaining 5% of trials we set c(n) ¼ [0 1]T,
i.e., wrist moved without motion of the upper arm. In no trial did
the upper arm move without also moving the wrist.

This very general start was sufficient to reproduce all the patterns
that are exhibited in Figure 5, i.e., learning curves that exhibit multiple
timescales, faster wrist learning than arm learning, asymmetric
transfer from arm to wrist, and blocking of transfer with prior
training in the wrist. All these properties except the first one arise
from the shape of the uncertainty matrix, which is directly due to our
assumption that prior actions included mostly conditions where

motion of the upper arm alsomoved the wrist. Themultiple timescales
arise from the Bayesian formulation of learning (Equations 10 and 12),
in which uncertainty tends to decrease with increased observations.

To find the model parameters that were matched to the actual
data, we fitted the model simultaneously to the measured perform-
ances in groups 1, 2, 3, 4, 5a, and 7. In our simulations, each ‘‘cycle’’
was one trial. We optimized the parameter values by minimizing the
sum of squared errors between the model predictions and the
experimental data (MATLAB optimization function lsqnonlin). We
arrived at the following values: A¼ 0.9968I, A*¼ 0.79I, Q¼ 0.0041I, r2

¼ 3.8, and P ¼ [1.7 "1.4; "1.4 1.6]. These values were used for the
simulations shown in Figures 5 and 6.
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