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Shmuelof L, Krakauer JW, Mazzoni P. How is a motor skill
learned? Change and invariance at the levels of task success and
trajectory control. J Neurophysiol 108: 578–594, 2012. First pub-
lished April 18, 2012; doi:10.1152/jn.00856.2011.—The public pays
large sums of money to watch skilled motor performance. Notably,
however, in recent decades motor skill learning (performance im-
provement beyond baseline levels) has received less experimental
attention than motor adaptation (return to baseline performance in the
setting of an external perturbation). Motor skill can be assessed at the
levels of task success and movement quality, but the link between
these levels remains poorly understood. We devised a motor skill task
that required visually guided curved movements of the wrist without
a perturbation, and we defined skill learning at the task level as a
change in the speed–accuracy trade-off function (SAF). Practice in
restricted speed ranges led to a global shift of the SAF. We asked how
the SAF shift maps onto changes in trajectory kinematics, to establish
a link between task-level performance and fine motor control. Al-
though there were small changes in mean trajectory, improved per-
formance largely consisted of reduction in trial-to-trial variability and
increase in movement smoothness. We found evidence for improved
feedback control, which could explain the reduction in variability but
does not preclude other explanations such as an increased signal-to-
noise ratio in cortical representations. Interestingly, submovement
structure remained learning invariant. The global generalization of the
SAF across a wide range of difficulty suggests that skill for this task
is represented in a temporally scalable network. We propose that
motor skill acquisition can be characterized as a slow reduction in
movement variability, which is distinct from faster model-based
learning that reduces systematic error in adaptation paradigms.

reaching; pointing; wrist; movement; speed–accuracy trade-off; motor
control

SOCIETY ARGUABLY REWARDS MOTOR skill above everything else,
at least judging by the salaries of professional athletes. Con-
versely, loss of motor function caused by neurological injury
and disease carries immense cost to individuals and society.
Both attainment of high levels of skill and the rehabilitation of
lost skills depend on motor learning, which makes the study of
motor skill learning of great scientific and practical interest.
The challenge is to agree upon a working definition of motor
skill and design laboratory-based tasks that capture real-world
manifestations of motor skill learning.

The majority of recent research on the neuroscience of motor
learning has focused on motor adaptation (Bedford 1989; Bock
1992; Caithness et al. 2004; Cunningham 1989; Krakauer et al.
1999, 2000; Miall et al. 2004; Rabe et al. 2009; Sainburg and

Wang 2002; Shadmehr and Mussa-Ivaldi 1994; Shadmehr et
al. 2010; Simani et al. 2007; Smith et al. 2006; Thoroughman
and Shadmehr 2000; Welch 1978; Wolpert et al. 1995), which
consists of a change in motor performance driven by a pertur-
bation, such as a change in the environment. The goal of
adaptation is reduction of systematic error induced by the
perturbation, and this occurs through adjustment of an internal
model that maps motor commands onto predicted sensory
outcomes (forward model; Shadmehr et al. 2010). In adapta-
tion, a prediction error (i.e., the discrepancy between predicted
and observed movement) drives learning in an obligatory
manner: the forward model changes to reduce this error re-
gardless of the subject’s wishes (Mazzoni and Krakauer 2006).
Reward can substitute for error information (Izawa and Shad-
mehr 2011) but is not necessary for adaptation to occur.
Adaptation occurs relatively rapidly, typically over tens of
minutes, and has a task-defined endpoint: elimination of the
systematic error caused by the perturbation. Real-life behaviors
that require adaptation include recalibration of sensorimotor
mappings (looking and reaching while wearing glasses, switch-
ing to driving on the opposite side of the road in another
country) and coping with changes in effectors (moving with
fatigued muscles).

Adaptation tasks do not, for the most part, require an
improvement of motor execution itself. In adaptation to visuo-
motor rotation, for example, subjects need to learn to map a
particular movement direction in hand space onto a new cursor
direction in visual space. Thus rotation adaptation leads to a
new visuomotor mapping that allows the selection of the
correct arm movement direction to be accurate in visual space.
Subjects do not, however, need to learn anything new about
how to execute the required movements in hand space. Indeed,
the movements required by the new visuomotor mappings are
movements that subjects were able to execute at baseline,
which were simply elicited by different targets. Adaptation, at
least early on, is not associated with changes in the quality of
execution of the new movement, which can be captured by
variable error around movement endpoint (Krakauer et al.
2000). Quality of execution is not emphasized in these para-
digms because the learned movement is bounded by the quality
of execution of the unperturbed baseline movement.

Here we are interested in the kind of motor learning that
occurs in the absence of perturbation and in which the main
performance goal is reduction of variable error (Deutsch and
Newell 2004; Guo and Raymond 2010; Hung et al. 2008; Liu
et al. 2006; Logan 1988; Muller and Sternad 2004; Rangana-
than and Newell 2010). Performance is limited by task diffi-
culty, often in the form of a trade-off between speed and
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accuracy. Learning consists of breaking through this limit (i.e.,
improving the speed–accuracy trade-off) (Reis et al. 2009;
Sanes et al. 1990). Real-life examples include many sports
(Yarrow et al. 2009). Learning tasks of this type do not
generally have a built-in limit of performance: there is no
systematic error to reduce to zero, and final performance is
different from baseline. The limit of maximum performance
cannot usually be predicted in advance, and improvement can
continue for years. Reward and motivation play a prominent
role. Although a universally accepted definition of motor skill
learning does not exist, the features just listed capture the
concepts of motor skill learning proposed by Guthrie (1952),
Welford (1968), Willingham (1998), and Schmidt and Lee
(2005), all of which share an emphasis on speed, accuracy
(precision), and efficiency. This kind of learning, which we
would operationally define as a core component of skill learn-
ing, has not been subjected to the same kind of detailed
kinematic analysis as adaptation.

In this study we sought to investigate motor skill learning
defined as an improved trade-off between speed and accuracy
using a task that did not involve a perturbation and was
amenable to a detailed kinematic analysis. We acknowledge
that skill has a more colloquial usage that goes beyond im-
provement in the speed–accuracy trade-off. Here we use skill
to mean “motor acuity,” in analogy with perceptual acuity but
exemplified in the motor case by the ability to move faster and
more accurately. We take this approach because we feel we are
justified in our conceptual distinction between learning to
return to baseline performance and improvement beyond base-
line performance. This distinction does not preclude perfor-
mance improvement at asymptote in adaptation paradigms.

Although skill is manifested as improved performance, there
must be underlying changes in movement that are the basis for
improved performance. In many motor-learning tasks, kine-
matics and performance are one and the same (e.g., movement
direction corresponds to success or failure in a visuomotor
rotation task). It is desirable to study learning in a task where
these two measures are more loosely coupled, because this is
the situation in many real-world tasks in which the relationship
between movement details and outcome score is complex. For
example, Sternad and colleagues have studied a virtual skittles
task where subjects swing a ball, hanging on a string, through
a curved trajectory to knock down a skittle (Muller and Sternad
2004). Accuracy depended on particular pairings of the angle
and speed of release of the ball from the hand. With practice,
subjects learned the optimal speed–angle pairings that allow
the skittle to be hit by the ball. Here movement kinematics had
redundancy, in that multiple speed–angle pairs can lead to
success. However, the kinematics of motor execution was
compressed to a single time point (the moment of release). It
would be of interest to study the entire movement that led to
that final time point. Improvement of motor execution was only
one component of motor skill learning in this task. Although
this improvement was reflected in a better performance (re-
duced variable error), larger changes were also shown in other
components: learning the best task-specific strategy and iden-
tifying the optimal region of the speed–angle subspace were at
least as important as reducing trial-to-trial movement variabil-
ity. We take this as evidence that the rate-limiting step in such
a complex task is learning the performance subspace, and not
overcoming any inherent execution-related difficulty in releas-

ing the ball at the requisite position and speed. Similarly,
Newell and colleagues studied a gyroscope-based task and
found that a critical point in learning was the identification of
a particular movement sequence that resonated with the gyro-
scope’s rotational inertial properties (Liu et al. 2006). Again,
we would argue that here the rate-limiting step is learning the
rule for how to move the gyroscope and not the actual execu-
tion of the rule.

In contrast to the tasks described so far, motor tasks that
emphasize repetitive or sequential finger tapping (Karni et al.
1995; Muellbacher et al. 2000; Rosenkranz et al. 2007; Walker et
al. 2002; Wu et al. 2004) do emphasize skill, in that they require
subjects to accurately execute a short repeating sequence of finger
taps at higher and higher speeds. Although this task speaks to an
important feature of skilled behavior, which is an improved rela-
tionship between task difficulty and performance, movement ex-
ecution is usually measured using two separate variables, one
indicating movement difficulty, such as movement time (MT),
and the other the quality of performance, such as accuracy. This is
problematic because skill acquisition can be inferred only if both
variables change in the expected direction (shorter MT, increased
accuracy) (Sanes et al. 1990). Ascertaining whether skill has been
acquired is not possible when these variables change in opposite
directions. An increase in speed, accompanied by a decrease in
accuracy, could reflect either a change in skill or simply a shift to
another range of performance along an unchanged trade-off be-
tween speed and accuracy.

Deriving a speed–accuracy trade-off function (SAF) has been
proposed as a preferred metric for execution assessment (Wick-
elgren 1977). We recently argued that to detect and quantify skill
acquisition as a changed relationship between speed and accuracy,
it is first necessary to empirically derive the SAF for that task at
baseline (Reis et al. 2009). In this framework, a perturbation
causes performance to worsen relative to baseline, and adaptation
would represent a return of performance back to the baseline SAF.
A fundamental feature of skilled performance, which has received
limited attention in previous studies, is the coexistence of two
kinds of measure: an explicit, usually binary, measure of success
at the task level, such as scoring a goal or getting a tennis serve in,
a measure that can be captured by a SAF (Plamondon and Alimi
1997; Reis et al. 2009), and continuous kinematic measures of
movement execution or quality (Ghilardi et al. 2009). A crucial
concept regarding skilled performance is that successful goal
attainment and the trajectory kinematics associated with this at-
tainment are distinct, because only the former is explicitly re-
quired by the task and there is likely redundancy between the
former and the latter.

With these considerations in mind we devised a motor skill task
in which skilled performance required accurate execution of an
entire trajectory without a perturbation component and examined
the effect of learning at the task level through examination of
changes in shape of the SAF and at the movement level through
analysis of trajectory kinematics. First, we examined how the SAF
changes with practice at a single difficulty level, to determine
whether skill for a task is controlled locally or globally. Second,
we studied the kinematic changes that accompany improved per-
formance, to establish whether the quality of movements changes
with increased skill. Third, we compared how the SAF changes
when practice is conducted at different speeds, to establish how
skill learning is affected by training at different difficulty levels.
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METHODS

Fifty right-handed subjects (28 females, 18–38 years of age), naïve
to the task, participated in the study. All subjects gave written
informed consent and received a small compensation to participate in
the study, which was approved by the Columbia University Institu-
tional Review Board. Subjects were randomly assigned to one of four
groups.

General Approach

All subjects performed a pointing task by moving a computer
screen cursor with their left wrist (Fig. 1A). The left wrist, rather than
the right, was chosen to maximize the dynamic range of learning,
based on the assumption that subjects would have worse initial
performance with their nondominant hand. The task goal was to guide
the cursor through a semicircular channel from one end to the other
without hitting the edges.

Apparatus

Subjects sat facing a computer monitor with their left forearm
splinted on a table and controlled a screen cursor by rotating their
hand (held closed into a fist with surgical adhesive tape) around the
wrist (Fig. 1A). The splint prevented forearm supination, so that
screen x and y positions were mapped, respectively, to wrist flexion–
extension and radial–ulnar deviation. A desktop computer (Apple,
Cupertino, CA) was used to control the visual display and to collect
cursor position data through custom software. A Qualisys (Gothen-
burg, Sweden) Proreflex infrared camera recorded pointing direction
as the position of a spherical reflective marker on the index finger’s
proximal interphalangeal joint (knuckle), at a sampling rate of 100 Hz.

The screen was calibrated so that a 1-cm deviation of the index
knuckle caused a 4-cm deviation of the screen cursor. Given that the
distance from radial head to the marker was 12 cm on average across
subjects, this calibration resulted in a mapping of 0.84 cm of screen
cursor movement per degree of wrist rotation. The screen was placed at

a distance of 140 cm from the subject and had dimensions of 32.2 � 28.8
cm. The target set consisted of two horizontally separated circles (diam-
eter of 0.7 cm). The distance between the targets was normalized accord-
ing to the subject’s fist size (the distance between the proximal interpha-
langeal joint and the radial styloid process in the wrist, with the hand
closed into a fist), and was typically 4.4 cm on the screen. The targets
were connected by two semicircular channels (upper and lower). The
width of the channel was the same as the targets’ diameter (0.7 cm). The
targets and the channels were always visible. The cursor’s diameter was
0.1 cm.

The placement of the targets required subjects to make movements
(arcs of 4.4-cm diameter on the screen, i.e., 1.1 cm of knuckle deviation)
that spanned the middle half of their full range of wrist excursion, which
was �4 cm of knuckle deviation. At the time of calibration, the experi-
menter passively moved each subject’s wrist horizontally and vertically
while observing the screen cursor, and carefully adjusted the forearm’s
angle so that all cursor positions on the screen could be achieved while
keeping the wrist well away from the limits of its range of motion. In this
manner, we minimized the possibility that biomechanical limits on range
of motion would influence subjects’ movements.

Task

The task goal was to move the cursor from one circle to the other
through the arc channel in the clockwise direction (upper channel for
movements starting in left circle; lower channel for movements
starting in right circle), without touching or crossing the channel’s
edges (Fig. 1B). Thus, only one channel was presented in each trial,
and channels alternated between successive trials. At the beginning of
each trial, one of the circles became white (start circle) and the other
red (target), and subjects placed the cursor in the start circle. After a
variable delay (400 to 1,600 ms), the target changed from red to green
and a tone was played (“ok-to-go” signal). The instruction was to start
the movement at any time after the ok-to-go signal, and to move the
cursor from start circle to target (according to the speed requirements
of the block). Note that this was not a reaction time protocol: subjects

Fig. 1. The arc-pointing task. A: experimental appa-
ratus. Subjects guided a screen cursor by making a
pointing movements with their fist through wrist
flexion–extension and pronation–supination. An in-
frared camera recorded the position of a retroreflec-
tive marker attached to the knuckle. B: sample hand
paths before and after training. The task was to move
the cursor in a clockwise direction from one circle to
the other through a circular channel. Representative
trajectories from a fast test speed condition (goal
movement time was 500 ms) before training (day 1,
top panel) and after training (day 5, bottom panel).
After training, trajectories were more likely to be
within the channel than before training.
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were clearly instructed to start moving only when ready. The trial
ended after the cursor entered and stayed in the target for 200 ms.

The cursor was visible throughout the movement. After each trial,
the entire trajectory of the cursor appeared as a series of circles on the
screen (“knowledge of performance” [KP]). The cursor path shown as
KP feedback was colored according to the position of the cursor with
respect to the channel; the portions of the path inside the channel were
white, and the portions outside the channel red. A reward was given
if the entire movement was inside the channel (and if the MT
requirements were met). During test sessions, KP was not shown if the
movement was outside the required MT range. Instead, an instruction
(“go faster” or “go slower”) appeared on the screen, directing subjects
to adjust their speed to the current MT requirements. Cursor path and
reward were shown for 1.5 s, after which the target of the previous
trial became the start circle, and another trial started, with the same
parameters except that the channel was the one not used in the
previous trial.

During testing and training sessions, subjects were required to
make the movements in a predefined MT range. In the beginning of
these sessions’ blocks, subjects observed a computer-generated dem-
onstration of the cursor moving through the channel in the required
MT. The cursor moved along the center of the channel at uniform
speed such that the MT was the middle MT value for the required
range. The MT of the cursor in the demonstration trial was chosen as
the middle value of this range simply to illustrate the approximate MT
that subjects should aim for. Reward was given only if the movement
was in the required MT range. If not, subjects were instructed to adjust
their speed on the next trial. The task’s reward structure was as
follows. Valid movements (inside the channel and within MT range in
constrained blocks) were followed by a pleasant sound and were
rewarded with symbolic coins in proportion to their MT. Invalid
movements (movements with any point outside the channel or with
MT outside the required range in constrained blocks) were followed
by a neutral sound (a click). The coins were shown on the screen after
each trial, and the cumulative number of coins, across all trials for a
given session, was continuously displayed at the top of the screen. The
goal was to accumulate as many coins as possible during each session.
The total number of coins at the end of each day was explicitly
reported to the subjects. Thus, control over MT was achieved by a
combination of reward (only movements within the required range
could be rewarded), feedback (movements outside range were fol-
lowed by an instruction to adjust speed and KP was not given), and
selection (movements outside the MT range were discarded from
further analysis).

Study Design

Subjects participated in the study for 5 consecutive days (Monday
to Friday). Performance-estimation sessions (testing sessions) and the
training sessions were carried out on separate days; testing sessions
were conducted before and after training, on days 1 and 5, and training
sessions on days 2, 3, and 4. These days were consecutive for all
subjects: day 1 (testing session before training) was always a Monday;
training days (2, 3, 4) were always Tuesday, Wednesday, and Thurs-
day; and day 5 (testing session after training) was always Friday.
Whereas an increase in accuracy with a concomitant decrease in MT
implies a shift of the SAF, we considered it important to sample the
SAF directly in separate testing sessions with constrained MTs. These
testing sessions afforded several benefits. First, they were a means to
assess skill across a range of speeds, and thus a range of difficulty
levels, rather than assessing performance changes at only one partic-
ular level of difficulty. In this manner, it was possible to test for
generalization, because changes in skill were measured not only at the
trained speed, but also at untrained ones. Second, the testing sessions
reduced the potential confound of exploratory behavior during train-
ing. It is plausible that, during training, subjects might explore their
performance limits by varying their trajectories from trial to trial in a

search for ways to achieve higher performance. Indeed, the fact that
the goal of learning is to reach a new level of performance, not
available before learning, makes some amount of exploration of
movement parameters during training sessions quite likely. Testing
sessions were designed to minimize such exploration because subjects
were asked to perform at their best level and because the required
speed for a given movement changed relatively frequently (see the
following text).

Testing sessions. Speed–accuracy functions (SAF) were probed
(identically for all groups) on day 1 and day 5 by collecting move-
ments at five predefined time ranges (in ms: 240–420, 400–600,
640–960, 800–1,200, 1,200–1,800). For all speeds but the fastest,
MT ranges were chosen to be proportional to the required MT. For the
fastest speed the range was chosen to be slightly wider. Typically, 20
movements within each time range were collected in each test session,
in two separate blocks. Movements outside the required MT ranges
were discarded. Thus, a testing session was composed of 10 blocks,
each composed of 10 movements within a single MT range. The order
of the blocks was interleaved to counterbalance possible sequential
effects from one block to the next. KP was shown only if the
movement was in the correct speed range. At the beginning of each
block, a demonstration trial was shown (see earlier text), which
indicated the target MT for that block. Between blocks, subjects had
a 10-s rest. Before the testing session, subjects completed a warm-up
block of 40 movements without any speed constraints and with reward
proportional to their speed.

Training sessions. Training sessions were carried out on days 2, 3,
and 4. Each day’s training was composed of 3 blocks of 120 move-
ments each. Between blocks, each subject’s hand was released from the
splint, and subjects rested for 5 min. Within blocks, subjects had a 10-s
rest every 30 movements. Four experimental groups had the same testing
sessions, and differed only in the training protocol: 1) Medium group
(n � 18), trained at target MT of 620 ms (required range, 520–780
ms); successful movements were rewarded with 4 coins. 2) Slow
group (n � 10), trained at target MT of 1,200 ms (960–1,440 ms);
successful movements were rewarded with 3 coins. 3) Fast group
(n � 17), trained at target MT of 450 ms (360–540 ms); successful
movements were rewarded with 5 coins. 4) Control group (n � 5), no
training sessions (performed only testing sessions on days 1 and 5).
The MT training range for the Medium group was chosen as slightly
faster than the average MT found in a pilot study in which subjects
were free to choose their movement speed during training. During
training, subjects were rewarded only if they executed the movement
in the channel and within the specified time range. KP was given for
all movements. A demonstration of the required MT was shown every
30 movements.

Data Analysis

Trajectories were analyzed both online and offline. Online analysis
was necessary to calculate MT to determine whether subjects had
moved at the required speed. For online analysis, cursor position was
decomposed into radial and angular components (r, �), with the origin
at the center of the circle defined by the two channels, after each trial.
Movement onset and end times were defined as the times when
angular position increased (in the clockwise direction) by 10° and
170°, respectively, relative to the angle of the start circle. A trial was
considered a success (“in channel”) if the cursor’s radial position
never exceeded the channel’s boundaries, and if the cursor entered and
stayed inside the target for at least 200 ms. These calculations were
performed by the custom software that controlled the experiment.

For offline analysis, we used custom routines written within the
Igor software package (WaveMetrics, Lake Oswego, OR). Cursor
position data were low-pass filtered (zero-lag, third-order Butterworth
filter, cutoff frequency 14 Hz). For submovement analysis, data were
filtered after each additional differentiation (to obtain velocity, accel-
eration, and jerk). Movement onset, end, MT, and trial success were
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calculated in the same manner as for online analysis. All the kinematic
variables were calculated after discarding the first and last 10°, which
correspond to the segments of cursor movement within the start circle
and within the target.

Performance Analysis

Since the performance measure p (proportion of movements in
channel) is bounded between 0 and 1, changes in p at a given MT are
not additively comparable across MTs. One could therefore observe
larger performance changes for initial values of p around 0.5 com-
pared with values near 1, not because subject’s skill has improved
more at 0.5 but because performance cannot improve beyond 1. To
allow comparison of the improvement across MTs, we transformed
the data to z values using the logit transformation, logit(p), z � ln[p/
(1 � p)], a common procedure for transforming binary outcomes into
unbounded variables (Agresti 1989; Bonnet et al. 2008; Davison and
Tustin 1978). The resulting variable z can be considered a more
accurate reflection of skill, because it is not bounded at either end of
the SAF. We thus refer to changes in z as skill learning in our task.
The logit function maps (0, 1) to (��, ��), and is the solution for z
in the logistic function p � (1 � e�z)�1. In the context of an SAF, z
can be a linear function of speed, or rather MT, such that z � b0 � b1

*

MT. Because the logit transformation (z � ln[p/(1 � p)]) is not
defined for p � 1 and p � 0, we adjusted the accuracy measure p
before applying the logit transformation according to the following
rule. For p � 1, padj � p � 1/(2n). For p � 1, padj � p � 1/(2n), where
n denotes the number of trials in condition (at least 18).

The same approach was taken in the investigation of feedforward
and feedback control changes. The proportion of movements in the
“critical zone” and proportion of successful feedback corrections were
transformed to z values using logit transformation.

Analysis of Trajectory Mean and Variability

To compare the effect of practice on trajectory, the trial-by-trial
mean and variance were computed (over all trials in a given speed
range) from time-normalized radial positions. The result was five
mean trajectories and their variance on both day 1 and day 5 for each
subject, which allowed comparison of mean trajectory and trajectory
variability between the two testing sessions (i.e., before and after the
three practice sessions). Trajectories were normalized by interpolating
the sampled radial position between 10° and 170° to 200 points evenly
spaced in time. Variance and average radial position were computed
for each time-normalized point in every subject, day, and test speed.
Thus, for every analysis, every subject contributed two matrices (one
for each testing session, i.e., day 1 and day 5) of 200 (time-normalized
points) � 5 (speeds). Time normalization of trajectories was per-
formed only for the analysis of trajectory mean and variability.

Submovement Analysis

To examine the kinematic structure of movements, we measured
movement segmentation by identifying peaks in the time course of
jerk. Such segmentation has generally been described in the velocity
profile, where a submovement can appear as a peak (Novak et al.
2002; Rohrer and Hogan 2003). However, submovements can blend
into each other if one starts before the previous one ended. This can
hide velocity peaks because they become separated not by a velocity
minimum but by an inflection point. Analysis of higher time deriva-
tives, such as acceleration and jerk, allows the identification of more
submovements that might otherwise be hidden in the velocity profile.
A triplet of jerk peaks, positive then negative then positive, generally
corresponds to a single peak in the velocity profile. Such a triplet of
peaks is identifiable even when the velocity profile has an inflection
point.

Based on these considerations, we defined a submovement as the
segment between two positive jerk peaks in a positive—negative–
positive triplet of jerk peaks (minimum peak jerk value, 200 cm/s3).
Submovement duration was the time from one positive jerk peak to
the next one. Submovement amplitude was the difference between the
first positive peak and the subsequent minimum. This method is only
one of several possible methods for identifying submovements
(Meyer et al. 1988; Milner 1992; Novak et al. 2002; Rohrer and
Hogan 2003). It makes fewer assumptions than other methods but may
also identify fewer submovements. No time normalization of the
trajectories was performed for the calculation of submovements.

To avoid the possibility that submovement analysis might be
affected by artifacts of the specific filtering method used, we also
performed this analysis after filtering the raw position data with a
smoothing spline (Reinsch 1967), with a smoothing factor of 0.003,
instead of the third-order Butterworth filter. This approach yielded the
same pattern of results for submovements as the analysis based on
Butterworth-filtered data, and will not be reported further.

Statistical Tests

Statistical analysis was performed in JMP (SAS Institute, Cary,
NC) and through custom routines written in Matlab (The MathWorks,
Natick, MA). The effects of conditions were compared through
repeated-measures ANOVA with subject as within factors.

Random field Gaussian distribution correction for temporal corre-
lation in the data. To detect differences in variance and mean radial
position, a two-way ANOVA was run repeatedly for every normalized
time point (n � 200). Thus, for every time point, an ANOVA was run
on within-subject variance or mean radial position measures from
every speed and testing day. Such an approach raises the need to
correct for the multiple comparisons (because each ANOVA was run
200 times, once for each time point). When correcting for the
probability of false positives due to the multiple comparisons, we took
into consideration the temporal correlations in the data that resulted
from temporal smoothing. Thus, corrected thresholds were computed
based on estimating the number of truly independent samples present
within the sampled vector using random field theory (Worsley et al.
1992). Assuming a full-width-at-half-maximum (i.e., the effective
full-width-at-half-maximum of a Gaussian kernel used to smooth
white noise errors) of 40 time points, and a one-dimensional size of
200, t and F random field thresholds were computed (Worsley et al.
2004) to provide a false-positive rate of 0.05 per test, corrected for
multiple comparisons across the multiple time points.

RESULTS

We first describe changes in task performance and kinemat-
ics through detailed analysis of data from subjects trained at
medium speed (Medium group). We then compare learning
across all three training groups (Slow, Medium, Fast).

Practice Led to a Change in the Speed–Accuracy
Trade-Off Function

The Medium group trained in a range of MTs between 520
and 780 ms on days 2, 3, and 4. Average accuracy for the first
and last training blocks showed a significant improvement
[t(17)� 27.68, P � 0.0001; Fig. 2A]. The increase in accuracy
was accompanied by a significant decrease in MT [t(17)�
2.92, P � 0.0095; Fig. 2B].

The SAF for baseline performance (day 1 performance)
showed a monotonic relationship between speed and accuracy
(Fig. 3A). After training in the range of movement times shown
by the histogram, subjects showed improvement at all test
speeds, which indicates generalization across difficulty levels
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of the improvement achieved during training (Fig. 3A).We
calculated performance change using �z, defined as z5 � z1
(i.e., the difference between day 5 and day 1; see METHODS).
Positive values of �z indicate improved movement accuracy
for a given MT range (Fig. 3B). One-way ANOVA for the
effect of MT on �z resulted in a significant intercept term
[t(17) � 6.85, P � 0.0001], indicating overall improvement in

the task, and a nonsignificant effect of MT [F(4,68) � 0.356,
P � 0.839], indicating that the improvement did not differ
between trained and untrained speeds. Importantly, there was
no significant change in z for the Control group, who were
tested on days 1 and 5 but did not get any training on days 2,
3, or 4. This indicates that the test sessions themselves did not
lead to appreciable skill learning [t(4) � 1.1, P � 0.284].

Fig. 2. Performance during training blocks, shown as individual subject data (thin gray traces) and as a group average 	 SE (thick black trace). A: movement
time (MT) as a function of training block (120 trials, 3 blocks per daily session). Training sessions took place on 3 consecutive days for all subjects. With training,
average MT and its intersubject variability decreased. Also shown is the imposed MT range (horizontal dashed lines; i.e., MTs for which a movement within
the channel was rewarded). B: fraction of movements within the channel as a function of training block. With training, the proportion of successful movements
increased.

Fig. 3. Improvement in performance after training. A: proportion of within-channel movements on day 1 (gray) and day 5 (black), plotted as a function of test
movement time (MT). The testing session days (days 1 and 5) occurred a day before and a day after the 3 training days, respectively, for all subjects. Subjects
were required to move in five different MT ranges. The x-axis shows the average MT value achieved by subjects for each imposed MT range. The histogram
indicates the average distribution of movement times during training (collapsed across the 3 days of training). The traces represent speed–accuracy trade-off
functions (SAF). There is a change in the SAF before and after training, manifested as improved performance (greater rate of successful movements) at all MTs.
Note that improvement is observed at speeds that were not experienced during training (generalization). Error bars denote SE. B: logit-transformed change in
performance (�z) as a function of MT. Solid line indicates average �z; gray markers indicate performance of single subjects. All average values of �z are 
0,
indicating global improvement in accuracy.
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Improvement in Accuracy Was Accompanied by Specific
Changes in Trajectory Kinematics

We asked whether increases in the probability of success in
the arc-pointing task were accompanied by specific changes in
trajectory kinematics. Importantly, we sought to dissociate
changes in kinematics related to learning from changes that
were a function of movement speed (i.e., related to control).
This was accomplished by testing performance at fixed MTs
before and after training, which allowed us to separate effects
of day (skill) from the effects of speed (task difficulty).

Skill acquisition was associated with a large reduction in
trajectory variability. A feature that has been proposed to
characterize skilled motor performance is lower trial-to-trial
variability in task-relevant dimensions compared with novice
performance (Barden et al. 2005; Madeleine and Madsen 2009;
Muller and Sternad 2009; Scholz and Schoner 1999). We
therefore computed trial-to-trial variability (in a point-by-point

comparison) for the cursor’s radial position, which was the task-
relevant dimension for the task because the cursor had to remain
in the channel. Mean variability plots for each test MT are shown
for days 1 and 5 in Fig. 4, A and B. On day 1 there was an increase
in variability as movement speed increased and as trajectories
unfolded in the channel (Fig. 4A). On day 5, there was a marked
reduction in overall variability and a flattening of speed- and
position-related variability dependencies (Fig. 4B). Variability
changes were measured using two-way ANOVA with effects of
day (day 1, before training; day 5, after training), speed (5 test
speeds), and day � speed interaction. An ANOVA was per-
formed at each time-normalized point (i.e., 200 times). Correction
for multiple comparisons was done using random Gaussian field
theory (Worsley et al. 2004), an approach that takes into consid-
eration the temporal correlations in the data (see METHODS). All
three effects (day, speed, and day � speed interaction) reached
significance levels (Fig. 4, C–E). Note that day and speed effects

Fig. 4. Changes in trial-to-trial path variability between day 1 and day 5. This variability is the variation in the cursor trajectory’s radial position across trials,
for a given speed, across all trials in a testing session (day 1 or day 5). Movement duration was first normalized to 200 points. Variability was computed for every
subject, time point, and test speed before and after training (see METHODS). A: average variance as a function of normalized time and test MT on day 1. Variance
was greater for later portions of the trajectory and for higher speeds. B: average variance as a function of normalized time and test MT on day 5. Although the
same trends seen in day 1 persist, there is a noticeable reduction in overall variance levels. C: day effect on variance (F values) as a function of normalized time.
Larger F values indicate higher probability that variability changed with training. Dotted horizontal line represents the threshold (corrected for multiple
comparisons) above which F values are statistically significant. A significant change in variability after training can be seen throughout most of the trajectory.
D: speed effect (F values) as a function of normalized time. The changes in the variability measures between test speeds are most marked in the late portion of
the trajectory. E: day � speed interaction effect (F values) as a function of normalized time. Compared with the main effects, the interaction is smaller and reaches
significant levels only for brief portions of the trajectory.
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were much more pronounced than the interaction between speed
and day.

To confirm that variability decreased after training, we
performed a post hoc “leave-one-out” analysis. The input for
this analysis was a single variance measure from each subject
from day 1 and day 5, from a single normalized time point. The
point was chosen based on the maximal day effect from a
two-way ANOVA that was run on the remaining subjects in the
experiment (n � 17). Thus the data for the post hoc test were
selected independently of the activation of the individual sub-
jects, and therefore the two analyses (the first-step ANOVA
and the post hoc analysis on day effect) are not dependent. A
paired t-test on the variance measures from day 1 and day 5
revealed a significant decrease in variance after training [t(17) �
5.27, P � 0.0001].

Skill was associated with a change in average trajectory. A
given task and a given physical plant may be associated with a
unique solution for best performance. This solution may be-
come “known” early during familiarization with the task and
then attempted with increasing success with practice. Alterna-
tively, the unique solution itself may evolve through training.
Thus in the arc-skill task subjects could either show the same
mean trajectory or show qualitatively different mean trajecto-
ries at the beginning and end of training. The average move-
ment path was measured for the radial position of the cursor for
each of the five test speeds. Even though trajectory failures

occurred more frequently for the fast speeds, the average
trajectory, even before training, was inside the channel for all
test speeds (Fig. 5A). A two-way ANOVA on mean trajectory
showed an effect of day, speed, and a nearly significant day �
speed interaction (Fig. 5, B–D). This result indicates that the
average trajectory for each speed changed after training and
that the average trajectory for each speed was different.

Training led to an improvement in feedforward and feedback
control. Training could lead to better feedforward and/or feed-
back control. Although a feedforward improvement would lead
to decreased trajectory variability around the average path from
the beginning of the movement, feedback improvements
should become apparent when trajectories make large devia-
tions from the mean trajectory later in the movement. We
defined feedforward planning error to have occurred when the
cursor veered close to the channel edge early in the trajectory
(30° from the center of the starting circle), because we pre-
dicted that this would increase the risk of failing to remain in
channel. A movement was classified as being in a “critical
zone” if it was 
1SD (computed based on the distribution of
movements from all subjects before and after training) from the
channel center at 30° but nevertheless still in channel. The
feedforward error measure was the proportion of movements
that reached the critical zone. We also used this critical-zone
classification for our definition of online feedback correction
(i.e., the proportion of trials that were successful despite the

Fig. 5. Changes in average movement path. A: time course of average radial position of movements in the upper arc, for the two fastest MT ranges, centered
at 500 ms (left) and 300 ms (right). Radial cursor position is plotted against normalized time. Average path was computed by averaging time-normalized
trajectories across trials and subjects. The average trajectories are well inside the channel (depicted by the horizontal dotted lines). B: day effect (F values) as
a function of normalized time. Dotted horizontal line represents the threshold (corrected for multiple comparisons) above which F values are statistically
significant. Significant changes in average radial position after training can be seen along the first half of the trajectory. C: speed effect (F values) as a function
of normalized time. The changes in average radial position reach significance around the center of the trajectory. D: day � speed interaction effect (F values)
as a function of normalized time. Compared with the main effects, the interaction is much smaller, approaching significant levels in the first half of the trajectory.
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cursor having entered the critical zone at the beginning of the
movement). We found that both the feedforward and feedback
measures improved with training. To compare the changes in
proportions of critical-zone movements and successful correc-
tions, data were transformed to z values using the logit trans-
formation (see METHODS).

A two-way ANOVA (with effects of MT and day) showed
a clear reduction of the proportion of movements in the critical
zone after training [F(1,161) � 7.928, P � 0.0055, Fig. 6A]. In
addition, the proportion of movements that entered the critical
zone and yet remained inside the channel increased after
learning increased [F(1,156) � 9.991, P � 0.0019, Fig. 6B].
Thus, with training, subjects were able to reduce the number of
trials that entered the critical zone early in the trajectory and
increased their ability to steer themselves out of trouble in the
event that they did enter the critical zone.

Although this analysis suggests possible changes in feedfor-
ward and feedback control, it is limited because we did not
manipulate the relevant variables to establish cause–effect
relationships. Nevertheless, we consider this approach worth-
while because there are no straightforward manipulations to
conclusively distinguish between improvements in feedfor-
ward and feedback control. For example, whereas sudden
visual perturbations of the cursor could be used to study
feedback corrections, this would not address online correction
of self-generated errors, which may involve other mechanisms.
Similarly, removing visual feedback and observing changes in
endpoint variability would not isolate feedforward control

because corrections could still occur based on proprioception
and efference copy signals.

Skill was associated with decreased movement effort, with-
out changes in submovement number or duration. Skilled
movements are typically characterized by their graceful trajecto-
ries. This feature can be quantified by movement smoothness,
which has been suggested as an optimization criterion for plan-
ning of reaching movements (Flash and Hogan 1985). Thus, skill
acquisition could be a process of trajectory optimization that
would result in smoother trajectories after training. Such a change
could correspond to the “improved efficiency” that is included in
some definitions of motor skill learning (e.g., Guthrie 1952; Pear
1948; Proctor and Dutta 1995). We computed trajectory smooth-
ness by integrating the squared jerk (rate of change of accelera-
tion) profile along the entire trajectory (smaller values of inte-
grated square jerk indicate greater smoothness). We did not nor-
malize this measure of smoothness across speeds, because we
were interested in smoothness changes that accompanied training,
not changes in speed. For higher movement speeds, the integrated
square jerk could be smaller (due to shorter movement duration)
or larger (due to higher jerk values associated with higher speeds).
As it happened, integrated square jerk increased with movement
speed [F(4,153) � 50.87, P � 0.0001]. Importantly, there was a
significant decrease of integrated square jerk following training, as
seen by a significant day effect [F(1,153) � 6.33, P � 0.0129] and
a nonsignificant day � speed interaction [F(4,153) � 0.1647, P �
0.96]. These results indicate that movement smoothness increased
with training across all test speeds (Fig. 7A).

Fig. 6. Improvement in feedforward and feed-
back control. “Critical-zone” movements were
defined based on the distribution of the radial
positions at the beginning of the movement (at
30°, thick black lines). Top: representative tra-
jectories for a movement outside the critical
zone (circles), a movement in the critical zone
that stayed in the channel (�’s), and a move-
ment in the critical zone that exited the channel
(squares). A: proportion of movements in the
critical zone before (gray) and after (black) train-
ing, as a function of test MT. After training, fewer
movements entered the critical zone, indicating
improved movement planning. B: proportion of
movements in the critical zone that stayed inside
the channel as a function of test MT before (gray)
and after (black) training. After training, the pro-
portion of successful corrections increased for all
speeds.
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Wrist trajectories were composed of a series of peaks in the
velocity profile. Such irregularities may reflect submovements,
that is, segmentation of the overall movement into individually
controlled components (Milner 1992; Morasso and Mussa
Ivaldi 1982; Vallbo and Wessberg 1993; Viviani and Terzuolo
1982). Given that submovements can reflect online corrections
of an ongoing trajectory or an optimal discrete controlled unit
for the task (Milner 1992), a question of considerable interest
is whether an increase in trajectory smoothness is the result of
a decrease in the number of submovements. We thus hypoth-
esized that the segmentation observed on day 1 indeed repre-
sented submovements, and asked how submovements are re-
lated to movement speed (i.e., how does submovement struc-
ture change across the execution range?) and testing day (how
does submovement structure change with skill learning?).

We defined a submovement as a peak in the time course of
tangential acceleration, detected as a triplet of peaks in the time
course of jerk (a negative peak surrounded by two positive

peaks; see Fig. 7 and METHODS). We calculated the mean
number of submovements per trial, their mean duration (time
between two positive jerk peaks), and their mean amplitude
(peak-to-peak amplitude of the jerk peak triplet) of submove-
ments. We tested for a relationship of these measures with
execution and learning by performing individual two-way
(MT, testing day) repeated-measures ANOVAs on each mea-
sure. Submovement number showed a clear increase with MT
and their amplitude decreased with MT (Fig. 7, B and D). Both
submovement number and amplitude varied more than three-
fold across the range of speeds tested [submovement number:
F(4,153) � 1,639, P � 0.0001; amplitude F(4,153) � 160, P �
0.0001]. Duration, on the other hand, varied negligibly with
MT: although the effect was significant [F(4,153) � 4.176, P �
0.003], the difference between duration at the fastest and
slowest speeds was only 6 ms (from 140 to 134 ms; Fig. 7C),
which is at the limit of our apparatus’ measurement sensitivity
(sampling rate 100 Hz). There was no significant effect of

Fig. 7. Submovement analysis. Movements were divided into segments according to the peaks in the time course of jerk (second time derivative of tangential
velocity). Plots on left represent, for a sample movement, the time course of tangential velocity (top), acceleration (middle), and jerk, for the same trajectory
(bottom). A submovement was defined as the portion of trajectory between successive positive jerk peaks (vertical dotted lines). A: integrated square jerk across
the whole trajectory as a function of MT for day 1 (gray) and day 5 (black). As movement time increases, trajectory smoothness increases, seen as a reduction
in integrated square jerk. Trajectory smoothness also increases with training. Error bars denote SE. B: number of submovements as a function of test MT for
day 1 (gray) and day 5 (black). Although there is a clear increase in the number of submovements with MT, there is no change with training. C: mean
submovement duration (peak-to-peak time differences) as a function of MT for day 1 (gray) and day 5 (black). As movement time increases the mean
submovement duration slightly decreases. There is no change with training. D: mean submovement amplitude (peak-to-peak jerk amplitude) as a function of MT
for day 1 (gray) and day 5 (black). As movement time increases the mean jerk pulse decreases. However, there is no change with training.
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testing day on mean submovement number [F(1,153) � 0.1293,
P � 0.72], duration [F(1,153) � 2.16, P � 0.14], or amplitude
of submovements [F(1,153) � 2.56, P � 0.11]. We obtained
similar results (i.e., significant speed effect on duration, am-
plitude, and number, and no significant day effects) when we
filtered the raw position data using a different filtering method
(smoothing splines), which suggests that the duration invari-
ance is not an artifact induced by filtering. Figure 8 depicts
representative velocity and jerk profiles before and after train-
ing for fast and slow movements, and demonstrates the train-
ing-induced reduction in integrated jerk with no changes in the
submovement’s structure.

The invariance of submovement structure could either indi-
cate a hard constraint, perhaps related to a limitation on how
curved wrist movements can be controlled, or an effect of
visual feedback-specific corrections. To address these two
alternatives we tested the effect of removing online visual
feedback. We performed an additional experiment in which
five subjects from our group of participants (and thus previ-
ously trained on the arc-skill task) were asked to perform the
arc-skill task again. After an initial warm-up block, subjects
performed a block of 100 movements without online visual
feedback, and a short block of 20 movements with visual
feedback. Comparison of the duration of the submovements
revealed no significant difference in the average duration of
submovements with or without visual feedback [F(1,4) � 0.037,
P � 0.85]. This result supports the idea that submovements of
fixed average duration are a kinematic feature of curved move-
ments, irrespective of whether visual feedback is present. It is
of course also possible that movement segmentation is an
idiosyncratic feature of the biomechanics of the wrist joint.
However, a type of movement segmentation was also found for
elbow movement, with or without visual feedback (Doeringer
and Hogan 1998). This generality argues against (but does not
exclude) a biomechanical origin for movement segmentation.
Another possible concern is that movement segmentations
might represent physiologic tremor. Excluding this possibility
on a quantitative basis is difficult (Vallbo and Wessberg 1993).
However, visual inspection of the trajectories did not show
stereotyped cycles of back-and-forth oscillations, which makes
tremor unlikely. It should be noted that, although the channel
had a constant curvature, our task did not require paths of
constant curvature but only paths that stayed within two radial

boundaries, which could have varying or constant curvature.
Our finding was that paths had varying curvature.

Training in Different Speed Ranges Led to Similar Changes
in the Speed–Accuracy Trade-Off Function

We started our investigation by assessing how subjects
changed their speed–accuracy trade-off with training. The first
finding was that subjects showed increased accuracy at speeds
that extended beyond their training range, which raised the
question, would generalization look different if training was
constrained to a different speed range? We therefore trained
two additional groups of subjects, one at a slower constrained
speed and one at a faster constrained speed, respectively. The
speeds experienced during training by these two groups, as
well as those experienced by the group described earlier, are
indicated by the histograms in Fig. 9A. As for the initial
(medium-speed) group, we probed accuracy at five test MTs
before and after training (Fig. 9A). Interestingly we saw a
similar change in the SAF for the three training speeds; that is,
the shape of the SAF after training was similar regardless of
training range. This result was supported by comparison, be-
tween groups, of changes in the performance measure, �z:
although there was an overall improvement in performance [�z
was significantly different from 0, t(41) � 9.79, P � 0.0001],
there was no difference between groups in the amount of
improvement across all speeds [F(2,41) � 0.078, P � 0.925 for
group effect; F(4,164) � 2.46, P � 0.0474 for speed effect; and
F(8,164) � 1.298, P � 0.248 for day � speed interaction; Fig.
9B]. The lack of interaction indicates that similar improve-
ments occurred within each speed range, regardless of the
speed practiced during training.

DISCUSSION

We sought to characterize the structure of motor skill learn-
ing at the levels of task performance and of underlying kine-
matics by studying changes in the speed–accuracy relationship
for a wrist precision guidance task. We emphasized the need to
distinguish learning-related changes in kinematics from those
associated with greater control demands when movements are
executed at higher speeds. Training within a restricted speed
range led to improvements that generalized to outside the
trained range, as indicated by a change in the overall SAF for

Fig. 8. Representative velocity and jerk pro-
files before and after training, demonstrating
the lack of change in number of submovements
and the reduction in overall jerk amplitude.
A: velocity (top) and jerk (bottom) profiles of a
fast movement before (gray) and after (black)
training. B: velocity (top) and jerk (bottom)
profiles of a slow movement before (gray) and
after (black) training.
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the task. Skill acquisition, which we defined as a training-
related change in the SAF, was accompanied by a reduction in
trajectory variability and small but significant changes in tra-
jectory shape and smoothness. These kinematic changes oc-
curred without changes in submovement number or duration.
Finally, constraining training to specific speed ranges led to a
similar shift of the SAF across test speeds.

Before discussing specific aspects of our results, it is worth-
while clarifying several novel aspects of our study. A large
body of research has addressed motor skill learning in the past
century (seminal reviews include Adams 1987; Guthrie 1952;
Pear 1948; Proctor and Dutta 1995; Schmidt and Lee 2005;
Welford 1968). A liberal use of the term “motor skill learning,”
however, coupled with the more recent recognition that motor
learning appears to be comprised of distinct processes that can
be distinguished at the computational and implementation
(neural substrate) levels (Bastian 2006; Izawa and Shadmehr
2011; Krakauer and Mazzoni 2011; Shmuelof and Krakauer
2011; Wolpert et al. 2011), makes it potentially difficult to
recognize what has been established about motor skill learning.

First, we based our investigation on an operational definition
of a core component of motor skill learning, suggested by Reis
et al. (2009). With few exceptions (Guthrie 1952; Schmidt and
Lee 2005; Welford 1968; Willingham 1998), prior studies have
usually relied instead on a common intuition about motor skill
learning. Our approach offers an inroad into studying motor
learning that is more resistant to arguments about definitions
themselves: our results establish properties of how a speed–
accuracy trade-off changes with practice, whatever term one
may wish to use for this type of learning.

Second, we assessed motor skill learning as a change in an
overall ability. We sampled subjects’ motor ability, defined as
performance on a speed–accuracy task, across multiple levels
of difficulty before and after training, which elicited perfor-
mance that ranged from very successful to poor. By sampling
across the entire speed–accuracy function, we thus measured
how subjects’ overall motor ability changed with training. This
approach is in contrast to the more common method of focus-
ing on performance at a single level of difficulty: performance
of a task in one condition is poor before learning, and it
improves, with unchanged difficulty, after practice. Although
this approach allows a detailed analysis of the time course of
learning (e.g., Newell et al. 2001), the change in the overall
ability to perform a task remains unknown. Our focus on
difficulty, imposed by a speed–accuracy trade-off, also made
our analysis of generalization and transfer directly relevant to
the improvement of motor ability: we tested generalization
along the same dimension (speed) that inherently imposed a
limit on performance. In analogy with studies of perceptual
skill learning, such as discriminating between sound pairs of
varying pitch separation (Amitay et al. 2006), we used gener-
alization to probe the expansion of an ability (in this case a
motor ability) along its difficulty axis.

Third, we analyzed the entire kinematics of the movement that
leads to an outcome at the performance level (i.e., to success or
failure). Most studies of motor skill learning have recorded out-
come-level measures (e.g., points scored, time on target), single-
point kinematics (the angle and speed of the hand at the time of
release of a dart or a ball on a string; e.g., Muller and Sternad
2004), or measures that collapse an entire trajectory to a single

Fig. 9. Comparison of performance between groups that trained at three speed ranges. A: proportion of within-channel movements on day 1 (dotted lines) and
day 5 (solid lines), plotted as a function of test movement time (MT), for three groups that trained at different speeds. Intensity of traces increases with training
speed (light gray, Slow training group; dark gray, Medium training group; black, Fast training group). The histogram indicates the average distributions of
movement times during training (collapsed across the 3 days of training). The traces represent speed–accuracy trade-off functions (SAF). All groups show
improvement across the whole test range, indicating broad generalization across MT values ranging from 300 to 1,800 ms, and thus across a wide range of
difficulty. Error bars denote SE. B: logit-transformed change in performance (�z) as a function of MT for the three groups. All average values of �z are 
0,
indicating global improvement in accuracy.
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number (such as root mean square error; e.g., Wulf and Lee 1993;
but see also Cohen and Sternad 2012; Georgopoulos et al. 1981).
In our task, the whole curved trajectory of the wrist was part of the
skilled task, because leaving the channel at any point along the
trajectory would lead to loss of points. This task feature effec-
tively imposed a speed–accuracy trade-off on the entire trajectory,
unlike traditional speed–accuracy tasks in which hitting a target is
all that matters.

Motor Skill Learning as a Reduction in
Trajectory Variability

Although ample evidence exists that improvement in skill is
associated with a reduction in variability in task performance
(Deutsch and Newell 2004; Guo and Raymond 2010; Hung et
al. 2008; Liu et al. 2006; Logan 1988; Muller and Sternad
2004; Ranganathan and Newell 2010) it is curious that, aside
from two elegant studies of the structure of performance
variability in skill tasks (Cohen and Sternad 2009; Muller and
Sternad 2004), the emphasis of recent motor learning studies
and computational theories has been on reduction of constant
error using adaptation paradigms (Bedford 1989; Bock 1992;
Caithness et al. 2004; Cunningham 1989; Krakauer et al. 1999,
2000; Miall et al. 2004; Rabe et al. 2009; Sainburg and Wang
2002; Shadmehr and Mussa-Ivaldi 1994; Shadmehr et al. 2010;
Simani et al. 2007; Smith et al. 2006; Thoroughman and
Shadmehr 2000; Welch 1978; Wolpert et al. 1995). In such
adaptation studies, variable error often does not decrease
(Krakauer et al. 2000) or is not measured at all because it is the
return to mean baseline performance that is of interest. Vari-
ability could have many sources, ranging from a deliberate
increase in exploration to find a solution for a complex task
(Izawa and Shadmehr 2011; Newell and McDonald 1992;
Olveczky et al. 2005) to variability induced by constraints of
the system, that is, execution noise (Apker et al. 2010; Sanger
2006; van Beers et al. 2004), sensory noise (Munuera et al.
2009; Osborne et al. 2005; van Beers 2007), and planning noise
(Churchland et al. 2006; van Beers 2007). We chose to focus
on variability due to noise because it defines the bound on
baseline performance (Fitts 1954). We minimized the contri-
bution of exploration to variability by having a dedicated test
session outside the training context that enforced movement
speed, and by devising a task with a solution that was clear
from the first trial. Our underlying assumption was that when
maximal skill is required in task performance, exploration is
minimized. In songbird learning, higher variability appears to
be related to exploration and learning. Interestingly, this vari-
ability is reduced when male birds perform a song for a female
bird, compared with when they practice the song in isolation
(Doupe et al. 2005). Variability measures obtained from day 1
showed an increase in variability with test speed, consistent
with signal dependent noise (Fig. 4). After training, we ob-
served an overall reduction in variability across all speeds,
which we define as an increase in motor acuity.

Our results are consistent with the reduction in variability
demonstrated in monkeys practicing fast accurate reaching
(Georgopoulos et al. 1981) and in human subjects practicing
the virtual skittles task (Cohen and Sternad 2009; Muller and
Sternad 2004), where execution variability was shown to
decrease over days. Although the approach in the virtual
skittles task was to mathematically divide task variability into

three different components (covariation, tolerance, and noise),
we isolated execution variability through the constraints of the
task design. We constrained covariation by choosing a single
joint movement with no redundancy, which subjects are able to
perform even at baseline. We minimized the need for explo-
ration by choosing a task with a “simple” spatial solution (the
channel provides clear visual indication of which trajectories
are valid) and by separating performance estimation from
training. The approaches used by Sternad and colleagues and in
our study both aim to study execution variability by examining
variability in task performance. Covariation and the choice of
coordinate frames, however, can have powerful effects on the
observed variability (Sternad et al. 2010) and potentially mask
the true extent of noise that is actually deleterious to perfor-
mance. Our task offers a natural choice of coordinate frame
(polar coordinates) in which to measure performance, because
the task is defined by the need to control radial position
throughout the movement, and there is no redundancy or
covariation to influence observed variability. Thus our task
provides a direct measure of task-relevant variability in a
task-relevant coordinate frame.

Unlike variability, the learning-related change in mean tra-
jectory was small (Fig. 5A). This is quite different from
adaptation paradigms, in which there are large changes in mean
trajectory over the course of learning. In adaptation experi-
ments, movement trajectories are either directly perturbed and
have to be changed back to baseline-like trajectories, as in
force-field adaptation, or the visual trajectory is perturbed and
large changes in arm trajectory are required, as in visuomotor
rotation. Large changes in mean trajectory to reduce constant
error are thought to occur through the updating of a forward
model via sensory prediction errors (Mazzoni and Krakauer
2006; Shadmehr et al. 2010; Synofzik et al. 2008; Tseng et al.
2007; Wagner and Smith 2008; Wolpert and Miall 1996). The
forward model then guides changes in the controller.

How should one fit this study’s results into existing ways of
thinking about motor learning? Here we provide some specu-
lation on this question. A fundamental concern is whether
variability reduction can be formulated in the same way as
constant error reduction (i.e., in terms of forward model-based
learning; Shadmehr et al. 2010). The output of an improved
forward model could be combined with sensory information to
improve state estimation. From this perspective, a scenario that
could explain our results is that trajectory reoptimization oc-
curred between days 1 and 5 from learning a better forward
model of the task, and that variability reduction was the result
of improved feedback gains from better state estimation with
the new forward model. Support for this idea comes from the
fact that we saw both a small but significant change in mean
trajectory and improved feedback corrections with training.
Thus one could interpret variability reduction within the cur-
rent framework of optimal feedback control (Diedrichsen et al.
2010; Todorov and Jordan 2002), based on the idea that an
optimal control policy can be computed once system identifi-
cation (adaptation) is complete (Nagengast et al. 2009).

A model-based framework, however, does not readily ex-
plain why it takes longer to reduce variability than to reduce
systematic error. Admittedly, we tested subjects on only two
days and so cannot separate out different time courses for
changes in the mean and variability of the trajectory, but there
is ample evidence that mean errors are reduced faster than
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variable errors (Cohen and Sternad 2009; Ghilardi et al. 2000;
Muller and Sternad 2004; Newell et al. 2001). To posit state
estimation as the bottleneck for motor skill learning only
pushes the explanation for this difference in time scales from
the motor execution side to the state estimation side.

Alternatively, reduction in variability may occur through a
model-free mechanism rather than a model-based one. Whereas in
model-based learning a forward model in the cerebellum is used
to derive a controller (Imamizu et al. 2000; Synofzik et al. 2008;
Tseng et al. 2007), in model-free learning (Kaelbling et al. 1996;
Sutton and Barto 1998), the controller is learned directly through
trial and error (Criscimagna-Hemminger et al. 2010; Huang et al.
2011; Kaelbling et al. 1996; Sutton and Barto 1998). Support for
the idea that there are cerebellum-independent forms of motor
learning comes from a study that showed that patients with
cerebellar degeneration can reduce small systematic errors with-
out a forward model, but do so through trial and error instead
(Criscimagna-Hemminger et al. 2010). Several recent studies of
motor learning that did not require adaptation to a perturbation,
but required trial-and-error learning, support the idea that practice
through trial and error leads to changes in motor cortical repre-
sentations. Rats trained in a reach-to-grasp task showed an im-
proved signal/noise ratio for neural spiking in motor cortex, and
this was correlated with reduced muscle recruitment variability
(Kargo and Nitz 2004). Practice of novel motor tasks promotes
dendritic spine formation in the motor cortex of the mouse (Xu et
al. 2009), and blocking dopamine receptors in motor cortex
completely abolishes skill learning in rats (Hosp et al. 2011).

Several studies have suggested that variability of eye move-
ments is largely the result of noisy sensory estimation rather
than motor noise (Munuera et al. 2009; Osborne et al. 2005;
van Beers 2007). The possibility that improvement in perfor-
mance variability for arm movements may similarly result
from improved sensory processing is supported by the finding
that proprioceptive acuity improves with motor learning
(Wong et al. 2011). Thus fast model-based learning in the
cerebellum and slower model-free learning in sensory and
motor cortex could provide an explanation for the difference in
time scales for reduction in systematic and variable errors.

Submovements as Constraints on How Skill Is Acquired

Our task design separated training from testing sessions,
which comprised a range of imposed speeds, and thereby
enabled us to identify trajectory features associated with re-
quired speed and not changeable with learning. The velocity
profiles of trajectories in our study were segmented into mul-
tiple peaks. Whereas velocity profiles became smoother after
training, their segmentation did not change with training or
with removal of visual feedback, and was characterized by an
average segment duration that was invariant across a range of
speeds and across training sessions.

Velocity profile segmentation is a common feature of straight
and curved movements, and has been interpreted to indicate the
presence of submovements. These have been hypothesized to
represent elementary units of motor execution (Houk et al. 2007;
Milner 1992; Morasso and Mussa Ivaldi 1982; Polyakov et al.
2009; Vallbo and Wessberg 1993; Viviani and Terzuolo 1982).
The stability, across training, in the structure of movement seg-
mentation in the present study may indicate that submovements
are elementary structures, perhaps reflecting motor commands

that descend in a pulsatile fashion (Vallbo and Wessberg 1993).
Alternatively, the segmentation pattern could reflect biomechani-
cal constraints of the wrist joint, which are known to result in
higher variability and curvature compared with arm movements
(Charles and Hogan 2010). In either case, the invariance in mean
submovement duration and number with training observed in our
study suggests that curved wrist movements have a basic structure
that cannot be changed by learning. The changes in mean trajec-
tory and trajectory variability that mediate performance improve-
ment with learning must respect this invariant execution structure.

We also found that skill is associated with more efficient
movement execution, as indicated by the reduction in trajec-
tory irregularity that accompanies learning. This change is
consistent with minimization of movement effort predicted by
optimal feedback control (Todorov and Jordan 2002). Taken
together these results suggest that, if indeed movement seg-
mentation indicates a submovement organization of aimed
movements, then skill is achieved through a more efficient
concatenation of movement segments, rather than by changes
in the movement segments themselves.

Generalization of Motor Skill

Generalization in skill learning can suggest features of how
skill is controlled and neurally represented, just as generaliza-
tion in adaptation can provide insight into functional and neural
bases of sensorimotor mappings (Shadmehr 2004; Tanaka et al.
2009). Crucially, we tested for generalization across levels of
difficulty (speed), which, for a task characterized by an SAF,
serves as a window into the functional organization of motor
skill. We found that training caused the SAF to shift as a
whole, and that training with different speed regimens yielded
similar SAF shifts.

The functional implication is that motor skill is achieved
through global control across a wide range of difficulty, sug-
gesting a common process responsible for performance across
speeds. In other words, the SAF does not reflect local trade-off
functions specific to narrow ranges of difficulty but rather an
overall control system that is modified as a whole with prac-
tice, regardless of whether practice occurs with easy or difficult
regimens. This surprising finding contradicts the “challenge
point” hypothesis, which posits that practice at a specific
difficulty level yields optimal information for learning (Guad-
agnoli and Lee 2004). Instead, our results echo what has been
observed in perceptual skill learning: practicing auditory dis-
crimination at any of three difficulty levels leads to similar
performance improvement at all three levels (Amitay et al.
2006). Note that such a global effect does not preclude the
possibility of additional local effects of training.

Generalization to other speeds, and the similarity of benefit
obtained from practicing at different speeds, suggest that
curved wrist movements are represented in a network that
controls wrist movement across a range of speeds, rather than
in speed-specific cortical modules. These findings are consis-
tent with the broad generalization seen across movement
speeds for motor adaptation (Goodbody and Wolpert 1998;
Joiner et al. 2011; Krakauer et al. 2000; but also see Kitazawa
et al. 1997) and with a neural representation of movement
speed as a modulator of neural activity across large populations
of premotor and motor cortical neurons (Moran and Schwartz
1999). From a computational standpoint, our finding that the
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SAF shifts across all speeds is consistent with the idea of
“dynamic movement primitives” (Pastor et al. 2009) in which
movements can be represented in kinematic coordinates as
differential equations that are spatially and temporally invari-
ant (i.e., movements are self-similar for a change in speed).

Our demonstration that local speed training can lead to a
global shift of the SAF suggests an important mechanistic
similarity between motor skill learning and perceptual learn-
ing. Like skill learning, perceptual learning leads to new levels
of performance, reduction in variability, and shifts in psycho-
metric functions (Sagi 2011). Both processes are associated
with expansion of cortical representations (Kleim et al. 2004;
Recanzone et al. 1992) and increased synaptic density (Xu et
al. 2009; Yang et al. 2009). Unlike perception, however, which
effectively results in a decision, motor control results in kine-
matics, which have a complex relationship to task success.
Thus, unlike studies of perceptual skill learning, motor skill
learning may offer a window into the intermediate behavioral
variables that are directly controlled by the brain to achieve
better task-level performance.

Two previous studies have addressed aspects of motor skill
learning specifically relevant to our results. A previous study
(Corcos et al. 1993) reported a reduction of endpoint variability
in a task that required fast elbow flexions over different angular
distances. This reduction generalized from practice at one
movement distance to other distances. Interpreting this change
as improvement of motor skill, however, is complicated by two
aspects of the study. First, accuracy was not emphasized in the
task. Second, the relationship between distance and accuracy
was nonmonotonic before practice, and became flat after prac-
tice. The task was not, therefore, a speed–accuracy trade-off
task. These previous results are consistent with ours in dem-
onstrating transfer of variability reduction to other movements
but do not inform us on the effect of difficulty on generaliza-
tion.

Fitts’s law was shown to change with practice in a study by
Abrams and Pratt (1993). The major finding was that, after
practice of fast visually guided tapping movements of a stylus,
the primary submovement comprised a larger fraction of total
movement time, whereas the fraction of time devoted to
corrective submovements was reduced. These results sug-
gested an improvement in feedback control, but there was also
a possible improvement in movement planning, because the
time before movement initiation increased with practice. Both
of these interpretations are consistent with our findings. In the
study by Abrams and Pratt, submovement number and duration
were not calculated for submovements beyond the primary
one. Comparison with our submovement findings is also pre-
cluded by the fact that submovements in a curved movement,
which are usually present throughout the movement, cannot be
assumed to be equivalent to corrective submovements in a
straight movement, which are mainly present at the end of the
movement.

Conclusion

We studied a nonperturbation task where difficulty is im-
posed by a speed–accuracy trade-off that applies to an entire
trajectory. Although motor skills can include abilities beyond
speed and accuracy, moving fast and accurately can be con-
sidered a central goal of motor skill learning. Our results

suggest that task-level improvement in this type of learning is
captured globally by changes in the SAF and at the kinematic
level by changes in mean trajectory, reduced trajectory vari-
ability, and improved feedback gains. These kinematic changes
are accomplished with invariant isochronous submovements.
We conclude that improved performance (skill) is driven
mainly by reductions in variability, and we conjecture that this
improvement is brought about by changes in motor and sensory
cortical representations that increase the neural signal-to-noise
ratio. This increase in signal over noise could be accomplished
by recruiting more neurons or by tuning individual neurons
more finely. We also suggest that these skill mechanisms are
distinct from the model-based mechanisms in cerebellum that
can quickly reduce systematic errors.
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