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 CURRENTOPINION The interaction between training and plasticity in
the poststroke brain

Steven R. Zeilera and John W. Krakauera,b

Purpose of review
Recovery after stroke can occur either via reductions in impairment or through compensation. Studies
in humans and nonhuman animal models show that most recovery from impairment occurs in the first
1–3 months after stroke as a result of both spontaneous reorganization and increased responsiveness to
enriched environments and training. Improvement from impairment is attributable to a short-lived sensitive
period of postischemic plasticity defined by unique genetic, molecular, physiological, and structural events.
In contrast, compensation can occur at any time after stroke. Here, we address both the biology of the
brain’s postischemic sensitive period and the difficult question of what kind of training (task-specific vs. a
stimulating environment for self-initiated exploration of various natural behaviors) best exploits this period.

Recent findings
Data suggest that three important variables determine the degree of motor recovery from impairment: the
timing, intensity, and approach to training with respect to stroke onset; the unique postischemic plasticity
milieu; and the extent of cortical reorganization.

Summary
Future work will need to further characterize the unique interaction between types of training and
postischemic plasticity, and find ways to augment and prolong the sensitive period using pharmacological
agents or noninvasive brain stimulation.

Keywords
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INTRODUCTION
Motor deficits after stroke can improve via two
separate mechanisms: true recovery and compen-
sation. Although it is convenient to refer to post-
stroke performance gains as recovery, it is important
to distinguish between true recovery and compen-
satory responses. True recovery means that the
same or close to the same prestroke movement
patterns are regained poststroke (i.e. a reduction
of impairment), whereas compensation means
using alternative movements to accomplish a motor
task (i.e. using different muscle groups, joints, or
effectors)[1&,2,3].

Discussion of rehabilitation after stroke often
emphasizes motor training; motor training,
however, is a much more ambiguous notion than
is generally appreciated. For a healthy individual,
motor training usually means extended practice at
a goal-directed task, which leads to motor learning
with subsequent task-specific improvements. Motor
training after stroke can promote either recovery
or compensation. In both cases, as in healthy

individuals, the goal of the training is task-specific.
In contrast to task-specific learning, spontaneous
recovery can lead to a return of all behaviors to
varying degrees. This leaves a paradox that to the
best of our knowledge does not get much of a
mention in the extant literature: spontaneous
biological recovery (SBR) is general [4,5] but motor
learning is task-specific [6,7]. In this review, rather
than being exhaustive we will instead argue for
a more explicit conceptual framework for consider-
ing the interaction between training protocols
and endogenous plasticity mechanisms triggered
by ischemia.
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In both healthy and poststroke brains, motor
training can lead to motor learning, defined as
better selection of actions and improved execution
of these actions for a particular task. Thus, motor
training is externally imposed, and motor learning
occurs as a consequence. Motor training induces
central nervous system (CNS) plasticity [8–11],
which we define here as the sum of molecular,
physiological, and structural changes that alter
motor output for a given sensory input. Two critical
points need to be made from the outset: first,
CNS plasticity can be triggered by ischemia in the
absence of training and still mediate recovery.
Data show that both rodents and primates exhibit
spontaneous, nontraining-associated recovery after
stroke [4,12–19]. Second, and conversely, beha-
vioral changes that improve function can happen
in the absence of plasticity. For example, a patient
can ‘learn’ within seconds to use their nonparetic
arm as a substitute for their paretic arm after stroke.
This quick strategic adjustment does not itself come
about through practice and motor learning in the
usual sense.

There are three observations about poststroke
motor recovery in human and nonhuman animal
models that suggest that there is a ‘sensitive period’
poststroke. First, almost all recovery from impair-
ment occurs in the first 3 months after stroke in
humans [5,20–22,23&] and in the first month after
stroke in rodent models [12,23&,24]. Secondly, the
effectiveness of poststroke training with respect to
impairment for both natural and pretrained behav-
iors diminishes as a function of time after stroke in
primates [23&,25] and in rodents [12,23&,26]. Thus,
there is a general concordance between animal and
human studies that rehabilitation in the sensitive
period is essential for significant recovery from
impairment [3,12,23&,25,27,28]. Throughout the

remainder of this review, we refer to poststroke
brains as being either inside or outside this
sensitive period. Thirdly, improvement beyond
the sensitive period is mediated almost entirely by
compensation.

Here, we posit a unique, time-limited poststroke
plasticity environment that falls off as a function of
time and distance from the infarct, and which
interacts with motor training. Plasticity mech-
anisms in the sensitive period are quantitatively
and qualitatively different from those seen outside
the sensitive period or in the normal brain during
task-specific learning.

TRAINING-INDUCED PLASTICITY IN
HEALTHY BRAIN IN THE ABSENCE OF
STROKE
Environmental experiences have diverse structural
and functional effects on the CNS. Perhaps the best-
studied consequences of environmental-induced
plasticity are in the visual system in which specific
visual stimuli can alter gene expression, dendritic
spine dynamics, neuronal tuning, and circuit con-
nections [29]. Similarly, a large number of studies in
rodents and primates have revealed a series of plastic
events in motor cortical areas that are associated
with improvements in task performance [10,11,30].

The most common task-specific motor training
in animal models consists of skilled prehension in
which the animal must reach for and grasp a food
pellet with subsequent delivery of the pellet to
its mouth; success can be quantified not only by
successful food delivery but also by quantification of
kinematics [31,32]. Although different researchers
make modifications, the basic task remains similar.
Within 1 day of beginning prehension training
in rodents, there are changes in gene expression
in primary motor cortex [33]. Between the first
and fifth days of motor training, genes influencing
synaptic efficacy, synaptogenesis, and cytoskeletal
dynamics are upregulated [34&,35]. Subsequent to
this increased expression, in some studies as early as
3 days, there are increases in evoked field potentials
in the primary motor cortex of the trained
hemisphere [36]. Over time, the amount of long-
term potentiation (LTP) that can be induced in
the trained hemisphere increases so that a given
stimulus produces excitatory postsynaptic poten-
tials of higher amplitude and with a greater dynamic
range [37]. Between days 1 and 5, prehension train-
ing alters dendritic spine dynamics leading to both
increased formation and elimination of laminar-
specific spines [38]. By profiling dendritic spine
dynamics in vivo, Fu et al. [39&] showed that prehen-
sion training is associated with the formation of new

KEY POINTS

! The poststroke sensitive period is a unique, time-limited
plasticity environment that mediates SBR and falls off as
a function of time and distance from the infarct.

! Plasticity mechanisms in the sensitive period are
qualitatively and quantitatively different from those in
normal brain and interact with motor training.

! It remains unclear whether rehabilitation in the post-
stroke period should emphasize task-specific training or
patient-driven exploration of movement in an immersive
environment.

! True recovery (i.e. reduction of impairment) will require
augmentation of the generalizing effects of SBR.
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dendritic spines and that these spines form in
clusters, a phenomenon associated with persistent
stability and not seen with motor activity alone.

By days 8–14 of prehension training, there is an
expansion of forelimb movement representations
(evoked with intracortical microstimulation) in the
rodent caudal forelimb area (the rodent equivalent of
primary motor cortex) [40–42]. Similar expansions of
motor maps have been documented in nonhuman
primates [43] as well as in humans [44–46] after
training on specific tasks. Although motor map
expansion seems to be necessary for acquisition of
a particular skill, persistence of the expanded state is
not necessary for maintenance of the skill [47,48&]
and may represent a transient stage in the long-term
reorganization of the motor cortex. The changes in
gene expression, neurotransmission, spine dyna-
mics, and motor maps outlined here are not seen
with use alone, that is, movement repetition in the
absence of learning [9,33,39&]. It is notable that in all
the studies cited, the changes in the brain were
documented with respect to learning of a specific
single task. The neural correlates of generalization
were not examined, which makes the applicability of
these learning effects to recovery from stroke unclear
unless rehabilitation is viewed as training a patient
one task at a time. We will return to this issue later in
the review.

MOTOR RECOVERY AND PLASTICITY
AFTER STROKE
Ischemic stroke leads to tissue loss at the site of
primary injury with a subsequent clinical phenotype
that depends on the location of damage. There is a
subsequent cascade of degeneration, neurotoxicity,
inflammation, and apoptosis in the ischemic core
and penumbra, with consequences for neuronal and
synaptic survival in the peri-infarct region and
connected areas (e.g., via diaschisis).

Plastic milieu during the poststroke sensitive
period
There is increasing evidence that there are
qualitative and not only quantitative differences
in the molecules and genes expressed, the physio-
logical responses manifested (including levels of
inhibition), and structural changes observed, when
training combines with the postischemic cortical
environment as compared to similar training in
the normal brain or in chronic stroke.

Gene expression changes

During the poststroke sensitive period, there are
widespread gene activations in peri-infarct cortex

and surrounding areas that are independent of
behavior [24,49–54]. Notably, these genes are very
similar to those important for neuronal growth,
dendritic spine development, and synaptogenesis
during early brain development. Transcription
analyses in peri-infarct somatomotor cortex
[50,51,53] reveal that different genes are up-
regulated in response to ischemia compared with
uninjured motor cortex after motor training [34&].
For example, synapsin, PSD-95, and GFAP are
regulated differently by motor training compared
with ischemia [55]. Furthermore, recent work by
Li et al. [50] has shown that during the poststroke
sensitive period, peri-infarct neurons express an age-
related growth-associated genetic program that
controls axonal sprouting and mediates the for-
mation of new patterns of connections within the
motor system [53]. For example, ischemia induces a
time-dependent increase in semaphorin 6A [51,56],
expression of extracellular matrix molecules [50],
and sequential waves of neuronal growth-promot-
ing genes [53] that have not been documented
with motor training in the absence of ischemia.
In addition to qualitative changes in the gene
expression profile, there is also an overlap in those
genes that are upregulated in response to ischemia
and motor learning. For example, brain derived
neurotrophic factor is upregulated in response
to both ischemia and motor learning [57–59].
These data suggest that the heightened plasticity
of the postischemic brain is attributable to both
unique gene products and increased expression of
genes related to normal motor learning.

Electrophysiological changes

Accumulating data suggest that ischemia rapidly
changes the physiology of the remaining nervous
tissue in both affected and unaffected hemispheres.
For example, beginning quickly after damage, LTP is
enhanced [60,61]. Some have used the term ischemic
LTP to refer to the temporal association with stroke
[62]. Also, in-vivo imaging has revealed that pre-
served and unique sensorimotor pathways become
active after focal strokes but not after other forms of
injury such as tumor and trauma [63,64].

One of the more striking physiological changes
in the poststroke brain is an alteration of excitatory/
inhibitory balance. The importance of excitatory/
inhibitory balance and the requirement for a
specific amount (not too much and not too little)
on plasticity has been elegantly demonstrated in the
developing visual system. Weak inhibition early in
life prevents visual experience-dependent plasticity,
likely due to both excitatory synapse over-activation
and a loss of temporal and spatial specificity
[65]. During a critical period of visual cortical
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development, maturation of inhibitory inter-
neurons leads to an intermediate level of inhibition
that provides the optimal balance between sensi-
tivity and specificity to inputs on a given neuron
for the robust experience-dependent plasticity
seen only during the development of adult cortical
circuitry. Once formed, increasing amounts of
inhibition maintain these adult circuits [65] and
shut down the robust plasticity seen only during
the critical period.

Poststroke investigations using physiological
measures, assays of neurotransmitter expression,
magnetoencephalography, and functional MRI
have demonstrated either an increase in excitation
[66–68] or a decrease of inhibition [67,69,70]
(especially synaptic/phasic inhibition) [13,71&&]
particularly in the peri-infarct cortex. This increase
in the excitation/inhibition ratio happens within
days after stroke and has been noted to resolve
outside of the sensitive period. Such increases
in the excitation/inhibition ratio may help to either
recreate an environment similar to that seen
during a developmental critical period and/or
unmask latent cortico-cortical connections
[42,72,73]. Interestingly, in contrast to the above
data, Clarkson et al. [13] have demonstrated an
increase in a specific kind of peri-infarct inhibition
known as tonic inhibition, which controls the
overall excitability of a neuron (as opposed to the
excitability of a given synapse). Tonic inhibition is
also regulated as a function of time and may
serve to limit acute excitotoxic injury as well as be
part of a negative feedback loop to limit plastic
changes.

Structural changes

Immediately after ischemia, peri-infarct dendritic
spine numbers are decreased; however, within days,
there is a dramatic increase in the rate of spine
formation that is maximal at 1–2 weeks and still
evident at least 1 month after stroke [74]. These data
agree with studies showing significantly increased
axonal sprouting in the peri-infarct cortex during
the first 2–4 weeks poststroke [75,76&&]. Notably,
ischemia results in new axon growth and path-
finding associated with the remapping of both
local and long-distance connections linked to
regions of injury (e.g., premotor as well as sub-
cortical areas) [50,77&,78&]. These data show ische-
mia leads to increased neuronal plasticity to a degree
not seen with motor training alone. In summary,
gene expression, neurotransmission, inhibitory/
excitatory balance, and synapse formation, are
transiently altered in the poststroke sensitive period,
creating a short-lived unique milieu of enhanced
plasticity.

The relationship of the sensitive period to
spontaneous biological recovery and
enriched environments
Despite the critical role of the poststroke sensitive
period in motor recovery [23&], there is little inves-
tigation specifically linking behavior in the sensitive
period to recovery. SBR is often used to describe
recovery that occurs as a result of endogenous repair
processes rather than behavioral interventions
[4,19]. This is a murky area, however, because the
animal is always doing something behaviorally after a
stroke. Here, we will operationally define SBR as
motor recovery that occurs in the absence of post-
stroke training on the task that is used to test for
recovery (the potential pitfalls and risks of circular-
ity when testing with the same task that was trained
on merits a longer discussion than we are able to
provide here). Although some SBR is likely related to
resolution of inflammation and decreased edema, a
large component is attributable to reorganization
over weeks. Specifically, in both human and
nonhuman animal models, motor recovery can
occur with either a minimum or even a lack of
task-directed motor training [4,19]. As mentioned
in the introduction, animal models of poststroke
motor recovery are dominated by a task-specific
pretraining/posttraining behavioral paradigm.
Importantly, however, every assessment with a
task that was not specifically trained has shown
some degree of improvement, suggesting that SBR
generalizes [12–18]. Generalized recovery from
impairment because of SBR is observed early after
stroke in humans, for example, increases on the
Fugl–Meyer scale [5].

Accumulating data suggest that the environ-
ment within which behavior occurs is very
important for recovery. Environmental enrichment,
defined as a more stimulating environment with
respect to novelty, variety, and reward, enhances
SBR in rodents even in the absence of specific train-
ing [12,79,80]. Ongoing research characterizing the
molecular, cellular, and behavioral mechanisms
that mediate the effects of environmental enrich-
ment [81] suggests that it augments the processes
that occur in the sensitive period, and thereby
amplifies SBR. Another not mutually exclusive
possibility is that an animal in an enriched environ-
ment engages in a broader range of more natural
premorbid behaviors and that this is preferable to
directed task-specific training.

The relationship of the sensitive period to
task-specific training
Another mechanism linking the poststroke sensitive
period and motor recovery is an enhanced response
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to task-specific training. We would venture that it is
the task-specific aspects of neurorehabilitation
training that have led to the tendency to too readily
equate recovery after stroke with motor learning.
Recovery of task-specific motor behavior during the
poststroke sensitive period can be dramatic, especi-
ally if the damage is subtotal and residual motor
cortical areas are spared [23&,82–84]. For example,
Nudo et al. [18] demonstrated that training monkeys
on skilled digital manipulation of food pellets in
small wells after an infarct involving the hand area
of the primary motor cortex resulted in prevention
of the loss of hand territory in the peri-infarct
cortex. However, withholding motor training led
to decreased digit representations by more than
50% [85]. Thus, during the sensitive period, motor
training directs functional reorganization in the
peri-infarct motor cortex presumably enabled by
the unique poststroke plasticity milieu.

Data suggest that the interaction between train-
ing and the poststroke sensitive period can extend
plastic changes beyond just peri-infarct cortex. For
example, Frost et al. [86] have shown that ischemic
damage to primary motor cortex leads to reorgan-
ization in remote cortical areas beyond peri-infarct
cortex and that the greater the damage, the
greater these remote changes. Other more recent
data show reorganization beyond peri-infarct cortex
in premotor areas [87,88]. These findings have led
to the suggestion of an ordered sequence of re-
organization from peri-infarct cortex to ipsilesional
cortex to contra-lesional areas [24,89].

An important point, which is perhaps under-
appreciated, is that compensation also occurs
during the poststroke sensitive period and is also
mediated by plastic changes in peri-infarct cortex
[84,90] and in other cortical areas [91]. Thus,
true recovery and compensation can happen
simultaneously during the sensitive period, which
raises the possibility that these compete for available
plasticity. A variant on this concern would be that
even an over-emphasis on particular tasks may be
detrimental to more general learning.

The enhanced plasticity milieu in the sensitive
period amplifies the effects of motor training on
motor recovery, but motor training also sculpts
the poststroke sensitive period plastic milieu.
Not all conditions during the poststroke sensitive
period are permissive to plasticity and recovery.
Poststroke, there is also increased expression of
genes inhibitory to plasticity. For example, ischemia
leads to increased expression of myelin-associated
proteins [50,92] and ephrins [50,76&&], both of which
are inhibitory to axonal outgrowth. Importantly,
there are hints that prehension motor training can
reduce the effects of these molecules and increase

axonal sprouting [93,94]. Additionally, within 3 days
after stroke, tonic inhibitory activity is increased.
In contrast to phasic inhibition, tonic inhibition is
extra-synaptic, controls the overall inhibitory state
of a neuronal circuit [71&&], and is indirectly related
to motor recovery after stroke [13]. In a recent study,
task-specific motor training, and not just ischemia
alone, led to reduced inhibitory markers in a pre-
motor area that mediated recovery [87]. Thus, there
is two-way causal traffic between motor training and
plasticity during the poststroke sensitive period.

It remains an open question as to what kind of
training to emphasize in the sensitive period. We are
not aware of any studies directly comparing task-
specific training and enrichment. In an intriguing
study by Biernaskie et al. [12], rats were pretrained to
perform multiple task-specific behaviors including
prehension, spontaneous forelimb use, and beam
walking followed by poststroke retraining at various
times in the setting of an enriched environment.
The results suggested that the combination of task-
specific training coupled with an enriched environ-
ment enhanced recovery compared with just an
enriched environment. There are caveats, however.
First, task-specific training without an enriched
environment was never directly compared with free
behavior in an enriched environment alone.
Second, and perhaps more importantly, animals
were trained and then evaluated with the same task.
If task-specific training is to be compared with self-
exploration across a wider task space then the test
used for comparison cannot be the trained task.

Training-induced plasticity in the poststroke
brain beyond the sensitive period
Although the poststroke sensitive period seems to
wane at 1 month in rodents and 3 months
in humans [23&], there are no definitive studies
characterizing the plasticity milieu outside of the
poststroke sensitive period. Nevertheless, obser-
vations suggest the following: first, motor training’s
ability to induce true recovery is reduced outside of
the poststroke sensitive period [23&]. Second, studies
detailing gene expression suggest that ischemia
induced alteration of gene expression is maximal
in the weeks after the stroke. Third, dendritic spines
are maximally plastic in the first month after stroke.
Finally, levels of phasic inhibitory neurotrans-
mission seem to nadir soon after stroke. Thus, we
suggest that the plasticity milieu in the poststroke
brain outside the sensitive period resembles (or is
perhaps identical to) the plasticity milieu in
the uninjured brain. That is to say, poststroke
plasticity normalizes with the passage of time.
It is very likely that the task-specificity of both
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compensatory responses in chronic stroke and skill
learning in healthy individuals can be attributed to
this more limited plasticity that does not allow
for reorganization.

CONCLUSION
There is a unique milieu of enhanced plasticity
for 1–3 months after ischemic stroke, and that
within this time window both spontaneous and
intervention-mediated recovery from impairment
is maximal. The interaction between this milieu
and training is distinct from equivalent training
in a healthy person or in patients with chronic
stroke. The crucial question that remains is how
to best take advantage of this limited time window.
What should not be done, in our view, is to simply
allow SBR to run its course with respect to impair-
ment and focus rehabilitation efforts on behavioral
compensation, that is, current practice. We say
this because data suggest that impairment could
be reduced further with behavioral and pharmaco-
logical interventions (e.g., fluoxetine) [95] and
that training compensation early on may reduce
the chance of impairment reduction (‘use it or
lose it’).

The current state of knowledge makes it much
harder to state what should be done early after
stroke. It is probably safe to say that the ideal would
be to augment the generalizing effects of SBR but
to attempt this with task-specific training alone
is a contradiction. Thus the human equivalent of
enrichment is needed, perhaps a video game arcade-
like space that allows more general movement
exploration [96]. Task-specific training could be
added if focused on tasks with the greatest chance
of generalization (e.g., reaching and grasping). Both
enrichment and the task-specific training need to be
at doses and intensities of exposure much greater
than is currently provided [97]. Future approaches
should enhance plasticity both during and after the
sensitive period. Two promising therapies include
pharmacological manipulation (e.g., fluoxetine)
and noninvasive brain stimulation, as both might
augment, prolong, or mimic the poststroke sensitive
period [95,98–104].
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